atmospheric general circulation model
Recently Published Documents


TOTAL DOCUMENTS

282
(FIVE YEARS 31)

H-INDEX

43
(FIVE YEARS 2)

MAUSAM ◽  
2021 ◽  
Vol 50 (4) ◽  
pp. 391-400
Author(s):  
BIJU THOMAS ◽  
S.V. KASTURE ◽  
S. V. SATYAN

A global, spectral Atmospheric General Circulation Model (AGCM) has been developed indigenously at Physical Research Laboratory (PRL) for climate studies. The model has six a levels in the vertical and has horizontal resolution of 21 waves with rhomboidal truncation. The model includes smooth topography, planetary boundary layer, deep convection, large scale condensation, interactive hydrology, radiation with interactive clouds and diurnal cycle. Sea surface temperature and sea ice values were fixed based on climatological data for different calender months.   The model was integrated for six years starting with an isothermal atmosphere (2400K), zero winds initial conditions and forcing from incoming solar radiation. After one year the model stabilizes. The seasonal averages of various fields of the last five years are discussed in this paper. It is found that the model reproduces reasonably well the seasonal features of atmospheric circulation, seasonal variability and hemispheric differences.


MAUSAM ◽  
2021 ◽  
Vol 62 (3) ◽  
pp. 339-360
Author(s):  
D.R. SIKKA ◽  
SATYABANBISHOYI RATNA

The paper is devoted to examine the ability of a high-resolution National Center for Environmental Prediction (NCEP) T170/L42 Atmospheric General Circulation Model (AGCM), for exploring its utility for long-range dynamical prediction of seasonal Indian summer monsoon rainfall (ISMR) based on 5-members ensemble for the hindcast mode 20-year (1985-2004) period with observed global sea surface temperatures (SSTs) as boundary condition and 6-year (2005-2010) period in the forecast-mode with NCEP Coupled Forecast System (CFS) SSTs as boundary condition. ISMR simulations are examined on five day (pentad) rainfall average basis. It is shown that the model simulated ISMR, based on 5-members ensemble average basis had limited skill in simulating extreme ISMR seasons (drought/excess ISMR). However, if the ensemble averaging is restricted to similar ensemble members either in the overall run of pentad-wise below (B) and above (A) normal rainfall events, as determined by the departure for thethreshold value given by coefficient of variability (CV) for the respective pentads based on IMD observed climatology, or during the season as a whole on the basis of percentage anomaly of ISMR from the seasonal climatology, the foreshadowing of drought/excess monsoon seasons improved considerably. Our strategy of improving dynamical seasonal prediction of ISMR was based on the premise that the intra-seasonal variability (ISV) and intra-annual variability (IAV) are intimately connected and characterized by large scale perturbations westward moving (10-20 day) and northward moving (30-60 day) modes of monsoon ISV during the summer monsoon season. As such the cumulative excess of B events in the simulated season would correspond to drought season and vice-versa. The paper also examines El Niño-Monsoon connections of the simulated ISMR series and they appear to have improved considerably in the proposed methodology. This strategy was particularly found to improve for foreshadowing of droughts. Based on results of the study a strategy is proposed for using the matched signal for simulated ISMR based on excess B over A events and vice-versa for drought or excess ISMR category. The probability distribution for the forecast seasonal ISMR on category basis is also proposed to be based on the relative ratio of similar ensemble members and total ensembles on percentage basis. The paper also discusses that extreme monsoon season are produced by the El Niño-Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD) modes in a combined manner and hence stresses to improve prediction of IOD mode in ocean-atmosphere coupled model just as it has happened for the prediction ENSO mode six to nine months in advance.


2021 ◽  
Vol 9 ◽  
Author(s):  
Charan Teja Tejavath ◽  
Karumuri Ashok ◽  
Supriyo Chakraborty

Proxy and model-based studies suggest multi-scale temporal variability in the Indian summer monsoon (ISM). In this study, using the CESM1 atmospheric general circulation model, we carried out multiple ensemble AGCM simulations for the Mid-Holocene (MH; ≈ 6 kyr BP), Medieval Warm Period (MWP; ≈ 1 kyr BP), Little Ice Age (LIA; ≈ 0.35 kyr BP), and Historical (HS; ≈ CE 2000) periods. We used the PMIP3/CMIP5 boundary conditions for this purpose. Our simulations indicate that the ISM during the MH was stronger compared to HS and the rainfall higher, in agreement with several proxy studies. The experiments also suggest that the ISM rainfall (ISMR) was higher during MWP relative to the LIA in agreement with our earlier results from the PMIP3 models. A relatively northward migration of the ITCZ over the Indian region and strengthening of the neighboring subtropical high over the northwestern Pacific, both associated with stronger insolation associated with the obliquity and precision during the MH, seem to be important reason Indian summer monsoon during the MH.


Water ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 122
Author(s):  
Juan Du ◽  
Fei Zheng ◽  
He Zhang ◽  
Jiang Zhu

Based on the multivariate empirical orthogonal function (MEOF) method, a multivariate balanced initial ensemble generation method was applied to the ensemble data assimilation scheme. The initial ensembles were generated with a reasonable consideration of the physical relationships between different model variables. The spatial distribution derived from the MEOF analysis is combined with the 3-D random perturbation to generate a balanced initial perturbation field. The Local Ensemble Transform Kalman Filter (LETKF) data assimilation scheme was established for an atmospheric general circulation model. Ensemble data assimilation experiments using different initial ensemble generation methods, spatially random and MEOF-based balanced, are performed using realistic atmospheric observations. It is shown that the ensembles integrated from the balanced initial ensembles maintain a much more reasonable spread and a more reliable horizontal correlation compared with the historical model results than those from the randomly perturbed initial ensembles. The model predictions were also improved by adopting the MEOF-based balanced initial ensembles.


Sign in / Sign up

Export Citation Format

Share Document