A Kinetic Study on the Methanogenesis Process in Anaerobic Digestion
Results obtained from experiments on two-phase anaerobic digestion using a high concentration of a volatile fatty acid (VFA) mixture were used to elucidate the kinetic mechanism of the methanogenesis process. The mixture consisted of the major intermediate products of anaerobic digestion, i.e., acetic acid (HAc), propionic acid (HPr) and butyric acid (HBu). The relationship between the rate of substrate utilization and substrate concentration in the digesters was in the form of a Michaelis-Menten equation. The rate-limiting step of the methanogenesis process, i.e., the conversion of HAc to methane, was speeded up in the digesters and this was proved kinetically. A method for determining kinetic constants for substrate-specific microorganisms was suggested. A simulation model for predicting the effluent substrate concentration was demonstrated. The effluent substrate concentration of an anaerobic digester fed by a multisubstrate was found to be simulatively predictable from its influent component substrates.