Demonstration of enhanced nutrient removal at two full-scale SBR plants

2004 ◽  
Vol 50 (10) ◽  
pp. 115-120 ◽  
Author(s):  
M. Peters ◽  
M. Newland ◽  
T. Seviour ◽  
T. Broom ◽  
T. Bridle

The efficacy of sequencing batch reactors (SBRs) to provide high levels of biological nutrient removal has been extensively demonstrated around the world. Environmental Solutions International (ESI) has now constructed over 20 full-scale SBR plants and has confirmed that nutrient removal is enhanced via the process of simultaneous nitrification and denitrification. Over 18 months of operational data from two plants, operating in distinctly different catchments, processing an average of between 2,000 and 2,500 m3/d of wastewater, has clearly shown the efficacy and robustness of the ESI SBR-BNR process. Median effluent total nitrogen and total phosphorus values of 3 mg/L and <0.6 mg/L, respectively, were demonstrated over the 18-month period. This high level of nutrient removal is attributed to the design of the bio-selector which maximises carbon storage for the subsequent denitrification reactions, the effective aeration control which ensures no over-aeration during the air-on cycle as well as the level of operational control provided at these two plants.

2020 ◽  
Vol 81 (2) ◽  
pp. 333-344
Author(s):  
Jianfeng Wen ◽  
Mark W. LeChevallier ◽  
Wendong Tao

Abstract Simultaneous nitrification and denitrification under low dissolved oxygen conditions is an energy-saving modification of the activated sludge process to achieve efficient nitrogen removal. Geographically distinct full-scale treatment plants are excellent platforms to address the links of microbial community with operating parameters. Mixed liquor samples were collected from a sequencing batch reactor plant, oxidation ditch plant, and step-feed activated sludge plant. Next-Generation Sequencing of the samples showed that the microbial communities were similar at the phylum level among the plants, being dominated by Proteobacteria. Microbial composition of functional groups was similar between the react fill and react phases of the sequencing batch reactors, among four sequencing batch reactors, and among four oxidation ditches. Nitrospira was the only identified genus of autotropic nitrifying bacteria with a relative abundance of 2.2–2.5% in the oxidation ditches and 0.4–0.7% at the other plants. Heterotrophic nitrifying–aerobic denitrifying bacteria were dominated by Dechloromonas with a relative abundance of 0.4–1.0%. Microbial community composition and nitrogen removal mechanisms were related to overall level and local zonation of dissolved oxygen, mixed liquor suspended solids concentration, nitrogen and organic loadings, and solids retention time. Low dissolved oxygen and low organic and nitrogen loadings favored growth of Nitrospira.


2013 ◽  
Vol 143 ◽  
pp. 204-211 ◽  
Author(s):  
Dechao Xu ◽  
Hongbo Chen ◽  
Xiaoming Li ◽  
Qi Yang ◽  
Tianjing Zeng ◽  
...  

1997 ◽  
Vol 31 (7) ◽  
pp. 1807-1812 ◽  
Author(s):  
Sang-Ill Lee ◽  
Jong-Ho Park ◽  
Kwang-Baik Ko ◽  
Ben Koopman

Author(s):  
Jakub Drewnowski ◽  
Jacek Makinia ◽  
Lukasz Kopec ◽  
Francisco-Jesus Fernandez-Morales

The biodegradation of particulate substrates starts by a hydrolytic stage. Hydrolysis is a slow reaction and usually becomes the rate limiting step of the organic substrates biodegradation. The objective of this work was to evaluate a novel hydrolysis concept based on a modification of the activated sludge model (ASM2d) and to compare it with the original ASM2d model. The hydrolysis concept was developed in order to accurately predict the use of internal carbon sources in enhanced biological nutrient removal (BNR) processes at a full scale facility located in northern Poland. Both hydrolysis concepts were compared based on the accuracy of their predictions for the main processes taking place at a full-scale facility. From the comparison, it was observed that the modified ASM2d model presented similar predictions to those of the original ASM2d model on the behavior of chemical oxygen demand (COD), NH4-N, NO3-N, and PO4-P. However, the modified model proposed in this work yield better predictions of the oxygen uptake rate (OUR) (up to 5.6 and 5.7%) as well as in the phosphate release and uptake rates.


Water SA ◽  
2002 ◽  
Vol 28 (4) ◽  
Author(s):  
N Artan ◽  
P Wilderer ◽  
D Orhon ◽  
R Tasli ◽  
E Morgenroth

Sign in / Sign up

Export Citation Format

Share Document