biological nutrient removal
Recently Published Documents


TOTAL DOCUMENTS

713
(FIVE YEARS 77)

H-INDEX

42
(FIVE YEARS 5)

Author(s):  
Rachel D. Stewart ◽  
Rania Bashar ◽  
Carly Amstadt ◽  
Gustavo A. Uribe-Santos ◽  
Katherine D. McMahon ◽  
...  

Abstract Sensor driven aeration control strategies have recently been developed as a means to efficiently carry out biological nutrient removal (BNR) and reduce aeration costs in wastewater treatment plants. Under load-based aeration control, often implemented as ammonia-based aeration control (ABAC), airflow is regulated to meet desired effluent standards without specifically setting dissolved oxygen (DO) targets. Another approach to reduce aeration requirements is to constantly maintain low DO conditions and allow the microbial community to adapt to the low-DO environment. In this study, we compared the performance of two pilot-scale BNR treatment trains that simultaneously used ABAC and low-DO operation to evaluate the combination of these two strategies. One pilot plant was operated with continuous ABAC while the other one used intermittent ABAC. Both processes achieved greater than 90% total Kjehldal nitrogen (TKN) removal, 60% total nitrogen removal, and nearly 90% total phosphorus removal. Increasing the solids retention time (SRT) during the period of cold (∼12 °C) water temperatures helped maintain ammonia removal performance under low-DO conditions. However, both processes experienced poor solids settling characteristics during winter. While settling was recovered under warmer temperatures, improving settling qual ity remains a challenge under low-DO operation.


Nitrogen ◽  
2021 ◽  
Vol 2 (4) ◽  
pp. 474-490
Author(s):  
Roya Pishgar ◽  
John Albino Dominic ◽  
Joo Hwa Tay ◽  
Angus Chu

This study investigated structural changes in microbial community of biological nutrient removal (BNR) in response to changes in substrate composition (ammonium and phosphate), redox condition, and morphological characteristics (flocs to granules), with a focus on nitrification and phosphate removal. Analyzing treatment performance and 16S rRNA phylogenetic gene sequencing data suggested that heterotrophic nitrification (HN) and autotrophic nitrification (AN) potentially happened in aerobic organic-rich (HN_AS) and aerobic organic-deficient (AN_AS) activated sludge batch reactors, respectively. However, phosphate release and uptake were not observed under alternating anaerobic/aerobic regime. Phosphate release could not be induced even when anaerobic phase was extended, although Accumulibacter existed in the inoculum (5.1% of total bacteria). Some potential HN (e.g., Thauera, Acinetobacter, Flavobacterium), AN (e.g., Nitrosomonas (3.2%) and Nitrospira), and unconventional phosphate-accumulating organisms (PAOs) were identified. Putative HN bacteria (i.e., Thauera (29–36%) and Flavobacterium (18–25%)) were enriched in aerobic granular sludge (AGS) regardless of the granular reactor operation mode. Enrichment of HN organisms in the AGS was suspected to be mainly due to granulation, possibly due to the floc-forming ability of HN species. Thus, HN is likely to play a role in nitrogen removal in AGS reactors. This study is supposed to serve as a starting point for the investigation of the microbial communities of AS- and AGS-based BNR processes. It is recommended that the identified roles for the isolated bacteria are further investigated in future works.


Water ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 3251
Author(s):  
Yinan Zhang ◽  
Yuxin Fang ◽  
Banglong Wang ◽  
Hangjun Zhang ◽  
Jiafeng Ding

Based on the improved high-efficiency sewage treatment performance of submerged membrane bioreactors (SMBRs), we focused on how to adjust the C/N ratio of the influent water during reactor start-up to prevent an excessive C/N ratio from causing membrane fouling. In this study, an experimental method of gradually adjusting the influent C/N ratio to quickly start the reactor was proposed, and the results showed that biofilm formation in R1 (SMBR, three influent C/N ratios of 5, 10, and 20) was approximately completed in 32 days, shorter than that (40 days) required in R2 (SMBR, influent C/N ratio of 20). Higher removal efficiencies of 76.4% for TN, 70.1% for COD, and 79.2% for NH3-N were obtained in R1 than in R2. The high-throughput sequencing results indicated that after 150 days of operation, the Shannon index of bacteria in R1 increased from 2.97 to 4.41 and the growth of Nakamurella, Ferruginibacter, and Rhodanobacter was promoted in the reactor, which indicated substantial microbial diversity in the biofilm. Therefore, gradually adjusting the influent C/N ratio could effectively enhance the nitrogen removal performance of denitrification microbial communities in SMBRs. This study offers a reliable approach for starting the SMBR-enhanced biological nutrient removal process in wastewater treatment plants by gradually adjusting the influent C/N ratio.


2021 ◽  
Author(s):  
Supaporn Phanwilai ◽  
Pongsak Noophan ◽  
Chi-Wang Li ◽  
Kwang-Ho Choo

Abstract Full-scale anaerobic, anoxic and aerobic (A2O) process is used worldwide for biological nutrient removal (BNR). However, operation parameters for nitrogen removals and information of microbial communities related to nitrogen removal in full-scale A2O wastewater treatment plants (WWTPs) having low and high COD/TN ratios are not available. Based on the analysis of four full-scale A2O WWTPs, it is suggested that maintaining longer SRT of ≥ 30 day and DO of ≥ 0.9±0.2 mg-O2 L-1 is needed to improve nitrogen removal efficiency under low COD/TN ratio (≤ 3.7). On other hand, at high COD/TN ratio (≥ 4.2), DO level of ≥ 2.6 mg-O2 /L and typical SRT of 19‒ 25 days would be suggested. It was confirmed that phosphorus removal efficiency significantly improved under BOD/TP ratio of > 20 for A2O process in these full-scale WWTP. Microbial distribution analysis showed that ammonia-oxidizing archaea (AOA) was abundant under conditions of low DO level, longer SRT, high temperature and low COD/TN ratio (≤ 3.7). Nitrosomonas sp. are mostly found in aerobic tank of full-scale A2O WWTPs. However, abundances of Nitrosomonas sp. are proportional to DO and NH4+ concentrations for WWTPs with high COD/TN ratio. Nitrosospira sp. are only found under operating condition of longer SRT for WWTPs with low COD/TN ratio. Abundances of Nitrobacter sp. are proportional to DO concentration and temperature rather than abundance of Nitrospira sp. Predominance of nosZ-type denitrifiers were found at low COD/TN ratio. Abundance of denitrifiers by using nirS genes was over abundance of denitrifiers by using nirK genes at high COD/TN ratios WWTPs.


Sign in / Sign up

Export Citation Format

Share Document