scholarly journals The Strict Terminal Connection Problem on Chordal Bipartite Graphs

2022 ◽  
Vol 48 (14) ◽  
Author(s):  
Alexsander de Melo ◽  
Celina de Figueiredo ◽  
Uéverton de Souza
2012 ◽  
Vol 312 (14) ◽  
pp. 2146-2152
Author(s):  
Mieczysław Borowiecki ◽  
Ewa Drgas-Burchardt

Author(s):  
Min-Sheng Lin

Counting dominating sets (DSs) in a graph is a #P-complete problem even for chordal bipartite graphs and split graphs, which are both subclasses of weakly chordal graphs. This paper investigates this problem for distance-hereditary graphs, which is another known subclass of weakly chordal graphs. This work develops linear-time algorithms for counting DSs and their two variants, total DSs and connected DSs in distance-hereditary graphs.


Algorithms ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 140 ◽  
Author(s):  
Asahi Takaoka

The Hamiltonian cycle reconfiguration problem asks, given two Hamiltonian cycles C 0 and C t of a graph G, whether there is a sequence of Hamiltonian cycles C 0 , C 1 , … , C t such that C i can be obtained from C i − 1 by a switch for each i with 1 ≤ i ≤ t , where a switch is the replacement of a pair of edges u v and w z on a Hamiltonian cycle with the edges u w and v z of G, given that u w and v z did not appear on the cycle. We show that the Hamiltonian cycle reconfiguration problem is PSPACE-complete, settling an open question posed by Ito et al. (2011) and van den Heuvel (2013). More precisely, we show that the Hamiltonian cycle reconfiguration problem is PSPACE-complete for chordal bipartite graphs, strongly chordal split graphs, and bipartite graphs with maximum degree 6. Bipartite permutation graphs form a proper subclass of chordal bipartite graphs, and unit interval graphs form a proper subclass of strongly chordal graphs. On the positive side, we show that, for any two Hamiltonian cycles of a bipartite permutation graph and a unit interval graph, there is a sequence of switches transforming one cycle to the other, and such a sequence can be obtained in linear time.


2012 ◽  
Vol 04 (03) ◽  
pp. 1250045 ◽  
Author(s):  
D. PRADHAN

In this paper, we consider minimum total domination problem along with two of its variations namely, minimum signed total domination problem and minimum minus total domination problem for chordal bipartite graphs. In the minimum total domination problem, the objective is to find a smallest size subset TD ⊆ V of a given graph G = (V, E) such that |TD∩NG(v)| ≥ 1 for every v ∈ V. In the minimum signed (minus) total domination problem for a graph G = (V, E), it is required to find a function f : V → {-1, 1} ({-1, 0, 1}) such that f(NG(v)) = ∑u∈NG(v)f(u) ≥ 1 for each v ∈ V, and the cost f(V) = ∑v∈V f(v) is minimized. We first show that for a given chordal bipartite graph G = (V, E) with a weak elimination ordering, a minimum total dominating set can be computed in O(n + m) time, where n = |V| and m = |E|. This improves the complexity of the minimum total domination problem for chordal bipartite graphs from O(n2) time to O(n + m) time. We then adopt a unified approach to solve the minimum signed (minus) total domination problem for chordal bipartite graphs in O(n + m) time. The method is also able to solve the minimum k-tuple total domination problem for chordal bipartite graphs in O(n + m) time. For a fixed integer k ≥ 1 and a graph G = (V, E), the minimum k-tuple total domination problem is to find a smallest subset TDk ⊆ V such that |TDk ∩ NG(v)| ≥ k for every v ∈ V.


Sign in / Sign up

Export Citation Format

Share Document