scholarly journals Complexity of Hamiltonian Cycle Reconfiguration

Algorithms ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 140 ◽  
Author(s):  
Asahi Takaoka

The Hamiltonian cycle reconfiguration problem asks, given two Hamiltonian cycles C 0 and C t of a graph G, whether there is a sequence of Hamiltonian cycles C 0 , C 1 , … , C t such that C i can be obtained from C i − 1 by a switch for each i with 1 ≤ i ≤ t , where a switch is the replacement of a pair of edges u v and w z on a Hamiltonian cycle with the edges u w and v z of G, given that u w and v z did not appear on the cycle. We show that the Hamiltonian cycle reconfiguration problem is PSPACE-complete, settling an open question posed by Ito et al. (2011) and van den Heuvel (2013). More precisely, we show that the Hamiltonian cycle reconfiguration problem is PSPACE-complete for chordal bipartite graphs, strongly chordal split graphs, and bipartite graphs with maximum degree 6. Bipartite permutation graphs form a proper subclass of chordal bipartite graphs, and unit interval graphs form a proper subclass of strongly chordal graphs. On the positive side, we show that, for any two Hamiltonian cycles of a bipartite permutation graph and a unit interval graph, there is a sequence of switches transforming one cycle to the other, and such a sequence can be obtained in linear time.

Author(s):  
Min-Sheng Lin

Counting dominating sets (DSs) in a graph is a #P-complete problem even for chordal bipartite graphs and split graphs, which are both subclasses of weakly chordal graphs. This paper investigates this problem for distance-hereditary graphs, which is another known subclass of weakly chordal graphs. This work develops linear-time algorithms for counting DSs and their two variants, total DSs and connected DSs in distance-hereditary graphs.


2000 ◽  
Vol 11 (03) ◽  
pp. 423-443 ◽  
Author(s):  
MARTIN CHARLES GOLUMBIC ◽  
UDI ROTICS

Graphs of clique–width at most k were introduced by Courcelle, Engelfriet and Rozenberg (1993) as graphs which can be defined by k-expressions based on graph operations which use k vertex labels. In this paper we study the clique–width of perfect graph classes. On one hand, we show that every distance–hereditary graph, has clique–width at most 3, and a 3–expression defining it can be obtained in linear time. On the other hand, we show that the classes of unit interval and permutation graphs are not of bounded clique–width. More precisely, we show that for every [Formula: see text] there is a unit interval graph In and a permutation graph Hn having n2 vertices, each of whose clique–width is at least n. These results allow us to see the border within the hierarchy of perfect graphs between classes whose clique–width is bounded and classes whose clique–width is unbounded. Finally we show that every n×n square grid, [Formula: see text], n ≥ 3, has clique–width exactly n+1.


2005 ◽  
Vol 145 (3) ◽  
pp. 479-482 ◽  
Author(s):  
Ryuhei Uehara ◽  
Seinosuke Toda ◽  
Takayuki Nagoya

2007 ◽  
Vol 381 (1-3) ◽  
pp. 57-67 ◽  
Author(s):  
C.M.H. de Figueiredo ◽  
L. Faria ◽  
S. Klein ◽  
R. Sritharan

2021 ◽  
Vol 55 ◽  
pp. 11
Author(s):  
P. Chakradhar ◽  
P. Venkata Subba Reddy

Let G = (V, E) be a simple, undirected and connected graph. A dominating set S is called a secure dominating set if for each u ∈ V \ S, there exists v ∈ S such that (u, v) ∈ E and (S \{v}) ∪{u} is a dominating set of G. If further the vertex v ∈ S is unique, then S is called a perfect secure dominating set (PSDS). The perfect secure domination number γps(G) is the minimum cardinality of a perfect secure dominating set of G. Given a graph G and a positive integer k, the perfect secure domination (PSDOM) problem is to check whether G has a PSDS of size at most k. In this paper, we prove that PSDOM problem is NP-complete for split graphs, star convex bipartite graphs, comb convex bipartite graphs, planar graphs and dually chordal graphs. We propose a linear time algorithm to solve the PSDOM problem in caterpillar trees and also show that this problem is linear time solvable for bounded tree-width graphs and threshold graphs, a subclass of split graphs. Finally, we show that the domination and perfect secure domination problems are not equivalent in computational complexity aspects.


Author(s):  
Nitisha Singhwal ◽  
Palagiri Venkata Subba Reddy

Let [Formula: see text] be a simple, undirected and connected graph. A vertex [Formula: see text] of a simple, undirected graph [Formula: see text]-dominates all edges incident to at least one vertex in its closed neighborhood [Formula: see text]. A set [Formula: see text] of vertices is a vertex-edge dominating set of [Formula: see text], if every edge of graph [Formula: see text] is [Formula: see text]-dominated by some vertex of [Formula: see text]. A vertex-edge dominating set [Formula: see text] of [Formula: see text] is called a total vertex-edge dominating set if the induced subgraph [Formula: see text] has no isolated vertices. The total vertex-edge domination number [Formula: see text] is the minimum cardinality of a total vertex-edge dominating set of [Formula: see text]. In this paper, we prove that the decision problem corresponding to [Formula: see text] is NP-complete for chordal graphs, star convex bipartite graphs, comb convex bipartite graphs and planar graphs. The problem of determining [Formula: see text] of a graph [Formula: see text] is called the minimum total vertex-edge domination problem (MTVEDP). We prove that MTVEDP is linear time solvable for chain graphs and threshold graphs. We also show that MTVEDP can be approximated within approximation ratio of [Formula: see text]. It is shown that the domination and total vertex-edge domination problems are not equivalent in computational complexity aspects. Finally, an integer linear programming formulation for MTVEDP is presented.


2015 ◽  
Vol 07 (02) ◽  
pp. 1550020 ◽  
Author(s):  
B. S. Panda ◽  
D. Pradhan

A set D ⊆ V is a restrained dominating set of a graph G = (V, E) if every vertex in V\D is adjacent to a vertex in D and a vertex in V\D. Given a graph G and a positive integer k, the restrained domination problem is to check whether G has a restrained dominating set of size at most k. The restrained domination problem is known to be NP-complete even for chordal graphs. In this paper, we propose a linear time algorithm to compute a minimum restrained dominating set of a proper interval graph. We present a polynomial time reduction that proves the NP-completeness of the restrained domination problem for undirected path graphs, chordal bipartite graphs, circle graphs, and planar graphs.


2013 ◽  
Vol Vol. 15 no. 2 (Graph Theory) ◽  
Author(s):  
Sunil Chandran ◽  
Rogers Mathew

Graph Theory International audience Let k be an integer and k ≥3. A graph G is k-chordal if G does not have an induced cycle of length greater than k. From the definition it is clear that 3-chordal graphs are precisely the class of chordal graphs. Duchet proved that, for every positive integer m, if Gm is chordal then so is Gm+2. Brandstädt et al. in [Andreas Brandstädt, Van Bang Le, and Thomas Szymczak. Duchet-type theorems for powers of HHD-free graphs. Discrete Mathematics, 177(1-3):9-16, 1997.] showed that if Gm is k-chordal, then so is Gm+2. Powering a bipartite graph does not preserve its bipartitedness. In order to preserve the bipartitedness of a bipartite graph while powering Chandran et al. introduced the notion of bipartite powering. This notion was introduced to aid their study of boxicity of chordal bipartite graphs. The m-th bipartite power G[m] of a bipartite graph G is the bipartite graph obtained from G by adding edges (u,v) where dG(u,v) is odd and less than or equal to m. Note that G[m] = G[m+1] for each odd m. In this paper we show that, given a bipartite graph G, if G is k-chordal then so is G[m], where k, m are positive integers with k≥4.


1996 ◽  
Vol 5 (4) ◽  
pp. 437-442 ◽  
Author(s):  
Carsten Thomassen

We prove that a bipartite uniquely Hamiltonian graph has a vertex of degree 2 in each color class. As consequences, every bipartite Hamiltonian graph of minimum degree d has at least 21−dd! Hamiltonian cycles, and every bipartite Hamiltonian graph of minimum degree at least 4 and girth g has at least (3/2)g/8 Hamiltonian cycles. We indicate how the existence of more than one Hamiltonian cycle may lead to a general reduction method for Hamiltonian graphs.


Sign in / Sign up

Export Citation Format

Share Document