scholarly journals Light Water Reactor Sustainability (LWRS) Program ? Non-Destructive Evaluation (NDE) R&D Roadmap for Determining Remaining Useful Life of Aging Cables in Nuclear Power Plants

2012 ◽  
Author(s):  
Kevin L. Simmons ◽  
Pradeep Ramuhalli ◽  
David L. Brenchley ◽  
Jamie B. Coble ◽  
Hash Hashemian ◽  
...  
1978 ◽  
Vol 45 (1) ◽  
pp. 1-51 ◽  
Author(s):  
R. Bardtenschlager ◽  
D. Bottger ◽  
A. Gasch ◽  
N. Majohr

Author(s):  
Jason Carneal

The American Society of Mechanical Engineers (ASME) Code for Operation and Maintenance of Nuclear Power Plants (OM Code) establishes the requirements for preservice and inservice testing and examination of certain components to assess their operational readiness in light-water reactor nuclear power plants. The Code of Federal Regulations (CFR) endorses and mandates the use of the ASME OM Code for testing air-operated valves in 10 CFR 50.55a(b)(3)(ii) and 10 CFR 50.55a(f)(4), respectively. ASME has recently approved Mandatory Appendix IV, Revision 0. NRC currently anticipates that Mandatory Appendix IV will first appear in the 2014 Edition of the ASME OM Code. Publication of the 2014 Edition of the ASME OM Code begins the NRC rulemaking process to modify 10 CFR 50.55a to incorporate the 2014 Edition of the ASME OM Code by reference. NRC staff has actively participated in the development of Mandatory Appendix IV, Revision 0, through participation in the ASME OM Code Subgroup on Air-Operated Valves (SG-AOV). The purpose of this paper is to provide NRC staff perspectives on the contents and implementation of Mandatory Appendix IV, Revision 0. This paper specifically discusses Mandatory Appendix IV, Sections IV-3100, “Design Review,” IV-3300, “Preservice Test,” IV-3400, “Inservice Test,” IV-3600, “Grouping of AOVs for Inservice Diagnostic Testing,” and IV-3800, “Risk Informed AOV Inservice Testing.” These topics were selected based on input received during NRC staff participation in the SG-AOV and other industry meetings. The goal of this paper is to provide NRC staff perspectives on the topics of most interest to NRC staff and members of the SG-AOV. Paper published with permission.


Author(s):  
Fred Setzer

This paper presents a discussion of the activities ongoing within the ASME (formerly the American Society of Mechanical Engineers) Operation and Maintenance of Nuclear Power Plants (OM) Code Subgroup on Air Operated Valves (SG-AOV), along with an overview of Revision 0 of Mandatory Appendix IV, “Preservice and Inservice Testing of Active Pneumatically Operated Valve Assemblies in Light-Water Reactor Power Plants.” Paper published with permission.


2020 ◽  
Vol 2020 ◽  
pp. 1-13 ◽  
Author(s):  
Hang Wang ◽  
Min-jun Peng ◽  
Yong-kuo Liu ◽  
Shi-wen Liu ◽  
Ren-yi Xu ◽  
...  

Electric valves have significant importance in industrial applications, especially in nuclear power plants. Keeping in view the quantity and criticality of valves in any plant, it is necessary to analyze the degradation of electric valves. However, it is difficult to inspect each valve in conventional maintenance. Keeping in view the quantity and criticality of valves in any plant, it is necessary to analyze the degradation of electric valves. Thus, there exists a genuine demand for remote sensing of a valve condition through nonintrusive methods as well as prediction of its remaining useful life (RUL). In this paper, typical aging modes have been summarized. The data for sensing valve conditions were gathered during aging experiments through acoustic emission sensors. During data processing, convolution kernel integrated with LSTM is utilized for feature extraction. Subsequently, LSTM which has an excellent ability in sequential analysis is used for predicting RUL. Experiments show that the proposed method could predict RUL more accurately compared to other typical machine learning and deep learning methods. This will further enhance maintenance efficiency of any plant.


Author(s):  
Inge Uytdenhouwen ◽  
Rachid Chaouadi

Abstract Worldwide there are more than 449 nuclear power plants (NPPs) in operation among which 329 reactors are older than 25 years and 94 will be operating for more than 40 years in 2020. Lifetime extensions are requested up to 50–60 years and sometimes even up to 80 years of operation for many existing NPPs. Long-term operation (LTO) of existing NPPs has therefore been accepted in many countries as a strategic objective to ensure supply of electricity for the coming decades. Within this strategy, the European Commission launched the NOMAD project, among others, through the Horizon-2020 programme. The reactor pressure vessels (RPVs) cannot be tested destructively in a direct way, neither can it be replaced. An indirect way is the use of Charpy samples from the so-called surveillance programs. The general strategy on the long term should focus on the ability to perform direct non-destructive evaluation (NDE) of the embrittlement of the vessel. NDE can be used to confirm that the data obtained by surveillance programs are being representative of the real state of the vessel for LTO. Moreover, a generic concern of large nuclear components such as the reactor vessel is the possible material heterogeneity such as macro-segregated regions which could eventually be located in the component but not in the baseline material used as surveillance material. Local non-destructive material inspection and comparison to reference materials in similar irradiation conditions would lead to a better assessment of the properties of the materials at any location of the vessel. The objective of NOMAD is to develop a tool that is capable of non-destructively evaluate the embrittlement of the vessel wall. The final system should be capable of inspecting the microstructure of the materials through the cladding. The tool that will be developed, will use existing and proven nondestructive testing techniques (NDT) with optimized and adjusted sensors. A combination of several techniques based on micro-magnetic, electrical and ultrasonic methods are investigated. Within NOMAD, they are calibrated and validated on a set of existing and newly irradiated samples consisting out of the most common RPV steels from Eastern and Western design, such as 22NiMoCr37, 18MND5, A533-B, A508 Cl.2, A508 Cl.3 and 15kH2NMFA. For the first time, a systematic study on a well-characterized set of samples that correlates the microstructure, mechanical properties, neutron irradiation conditions and non-destructive properties will be carried out. It will not only extend the existing database, but will include issues such as reliability, and uncertainty of the techniques as well as on material heterogeneity. The focus is laid on unbroken Charpy samples and large blocks with and without cladding to “simulate” the actual RPV inspection scenario. This paper gives an overview of the present status of the NOMAD project with focus on the outcome in WP1. The first preliminary NDE results from 6 set-ups and 28 parameters were compared with DBTT results from Charpy impact tests. They are very promising. Final results and detailed analysis will however only be available at the end of the project.


Sign in / Sign up

Export Citation Format

Share Document