scholarly journals Measurement of Nuclear Recoils in the CDMS II Dark Matter Search

2014 ◽  
Author(s):  
Scott Mathew Fallows
2021 ◽  
Vol 2021 (04) ◽  
pp. 047
Author(s):  
A. Alexandrov ◽  
G. De Lellis ◽  
A. Di Crescenzo ◽  
A. Golovatiuk ◽  
V. Tioukov

2020 ◽  
Vol 200 (5-6) ◽  
pp. 428-436
Author(s):  
G. Angloher ◽  
P. Carniti ◽  
I. Dafinei ◽  
N. Di Marco ◽  
A. Fuss ◽  
...  

Abstract COSINUS (Cryogenic Observatory for SIgnatures seen in Next-generation Underground Searches) is an experiment employing cryogenic calorimeters, dedicated to direct dark matter search in underground laboratories. Its goal is to cross-check the annual modulation signal the DAMA collaboration has been detecting for about 20 years (Bernabei et al. in Nucl Part Phys Proc 303–305:74–79, 2018. 10.1016/j.nuclphysbps.2019.03.015) and which has been ruled out by other experiments in certain dark matter scenarios. COSINUS can provide a model-independent test by the use of the same target material (NaI), with the additional chance of discriminating $$\beta /\gamma$$ β / γ events from nuclear recoils on an event-by-event basis, by the application of a well-established temperature sensor technology developed within the CRESST collaboration. Each module is constituted by two detectors: the light detector, that is a silicon beaker equipped with a transition edge sensor (TES), and the phonon detector, a small cubic NaI crystal interfaced with a carrier of a harder material (e.g. $$\hbox {CdWO}_4$$ CdWO 4 ), also instrumented with a TES. This technology had so far never been applied to NaI crystals because of several well-known obstacles, and COSINUS is the first experiment which succeeded in operating NaI crystals as cryogenic calorimeters. Here, we present the COSINUS project, describe the achievements and the challenges of the COSINUS prototype development and discuss the status and the perspectives of this NaI-based cryogenic frontier.


2014 ◽  
Vol 29 (19) ◽  
pp. 1443010 ◽  
Author(s):  
C. Cuesta ◽  
J. Amaré ◽  
S. Cebrián ◽  
E. García ◽  
C. Ginestra ◽  
...  

NaI(Tl) large crystals are applied in the search for galactic dark matter particles through their elastic scattering off the target nuclei in the detector by measuring the scintillation signal produced. However, energies deposited in the form of nuclear recoils are small, which added to the low efficiency to convert that energy into scintillation, makes that events at or very near the energy threshold, attributed either to radioactive backgrounds or to spurious noise (nonbulk NaI(Tl) scintillation events), can compromise the sensitivity goals of such an experiment. DAMA/LIBRA experiment, using 250 kg NaI(Tl) target, reported first evidence of the presence of an annual modulation in the detection rate compatible with that expected for a dark matter signal just in the region below 6 keVee (electron equivalent energy). In the frame of the ANAIS (Annual modulation with NaI Scintillators) dark matter search project a large and long effort has been carried out in order to understand the origin of events at very low energy in large sodium iodide detectors and develop convenient filters to reject those nonattributable to scintillation in the bulk NaI(Tl) crystal. 40K is probably the most relevant radioactive contaminant in the bulk for NaI(Tl) detectors because of its important contribution to the background at very low energy. ANAIS goal is to achieve levels at or below 20 ppb natural potassium. In this paper we will report on our effort to determine the 40K contamination in several NaI(Tl) crystals, by measuring in coincidence between two (or more) of them. Results obtained for the 40K content of crystals from different providers will be compared and prospects of the ANAIS dark matter search experiment will be briefly reviewed.


2019 ◽  
Vol 209 ◽  
pp. 01019
Author(s):  
Giovanni De Lellis

The nature of Dark Matter is one of the fundamental questions to be answered. Direct Dark Matter searches are focussed on the development, construction, and operation of detectors looking for the scattering of Weakly Interactive Massive Particles (WIMPs) with target nuclei. The measurement of the direction of WIMP-induced nuclear recoils is a challenging strategy to extend dark matter searches beyond the neutrino floor and provide an unambiguous signature of the detection of Galactic dark matter. Current directional experiments are based on the use of gas TPC whose sensitivity is strongly limited by the small achievable detector mass. NEWSdm is an innovative directional experiment proposal based on the use of a solid target made by newly developed nuclear emulsion films and read-out systems achieving a position accuracy of 10 nm.


2019 ◽  
Vol 79 (11) ◽  
Author(s):  
M. Ardid ◽  
A. Baschirotto ◽  
N. Burgio ◽  
M. Corcione ◽  
L. Cretara ◽  
...  

AbstractIn the framework of the search for dark matter in the form of WIMPs using superheated liquids, a study is conducted to establish a computational procedure aimed at determining how the thermodynamic conditions kept inside a particle detector affect the acoustic signal produced by bubble nucleation. It is found that the acoustic energy injected into the liquid by the growing vapour bubble increases as the liquid pressure is decreased and the superheat degree is increased, the former effect being crucial for the generation of a well-intelligible signal. A good agreement is met between the results of the present study and some experimental data available in the literature for the amplitude of the acoustic signal. Additionally, the higher loudness of the alpha-decay events compared with those arising from neutron-induced nuclear recoils is described in terms of multiple nucleations.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
C. E. Aalseth ◽  
P. Agnes ◽  
A. Alton ◽  
K. Arisaka ◽  
D. M. Asner ◽  
...  

Although the existence of dark matter is supported by many evidences, based on astrophysical measurements, its nature is still completely unknown. One major candidate is represented by weakly interacting massive particles (WIMPs), which could in principle be detected through their collisions with ordinary nuclei in a sensitive target, producing observable low-energy (<100 keV) nuclear recoils. The DarkSide program aims at the WIPMs detection using a liquid argon time projection chamber (LAr-TPC). In this paper we quickly review the DarkSide program focusing in particular on the next generation experiment DarkSide-G2, a 3.6-ton LAr-TPC. The different detector components are described as well as the improvements needed to scale the detector from DarkSide-50 (50 kg LAr-TPC) up to DarkSide-G2. Finally, the preliminary results on background suppression and expected sensitivity are presented.


Sign in / Sign up

Export Citation Format

Share Document