liquid argon
Recently Published Documents


TOTAL DOCUMENTS

1465
(FIVE YEARS 208)

H-INDEX

58
(FIVE YEARS 9)

Author(s):  
K. E. Duffy ◽  
A. P. Furmanski ◽  
E. Gramellini ◽  
O. Palamara ◽  
M. Soderberg ◽  
...  

AbstractPrecise modeling of neutrino interactions on argon is crucial for the success of future experiments such as the Deep Underground Neutrino Experiment (DUNE) and the Short-Baseline Neutrino (SBN) program, which will use liquid argon time projection chamber (LArTPC) technology. Argon is a large nucleus, and nuclear effects—both on the initial and final-state particles in the interaction—are expected to be large in neutrino–argon interactions. Therefore, measurements of neutrino scattering cross sections on argon will be of particular importance to future DUNE and SBN oscillation measurements. This article presents a review of neutrino–argon interaction measurements from the MicroBooNE and ArgoNeuT collaborations, using two LArTPC detectors that have collected data in the NuMI and Booster Neutrino Beams at Fermilab. Measurements are presented of charged-current muon neutrino scattering in the inclusive channel, the ‘0$$\pi $$ π ’ channel (in which no pions but some number of protons may be produced), and single pion production (including production of both charged and neutral pions). Measurements of electron neutrino scattering are presented in the form of $$\nu _e+\bar{\nu }_e$$ ν e + ν ¯ e  inclusive scattering cross sections.


2022 ◽  
Vol 17 (01) ◽  
pp. C01031
Author(s):  
C. Vogl ◽  
M. Schwarz ◽  
X. Stribl ◽  
J. Grießing ◽  
P. Krause ◽  
...  

Abstract Liquid argon (LAr) is a common choice as detection medium in particle physics and rare-event searches. Challenges of LAr scintillation light detection include its short emission wavelength, long scintillation time and short attenuation length. The addition of small amounts of xenon to LAr is known to improve the scintillation and optical properties. We present a characterization campaign on xenon-doped liquid argon (XeDLAr) with target xenon concentrations ranging from 0 to 300 ppm by mass encompassing the measurement of the photoelectron yield Y, effective triplet lifetime τ 3 and effective attenuation length λ att. The measurements were conducted in the Subterranean Cryogenic ARgon Facility, Scarf, a 1 t (XeD)LAr test stand in the shallow underground laboratory (UGL) of TU-Munich. These three scintillation and optical parameters were observed simultaneously with a single setup, the Legend Liquid Argon Monitoring Apparatus, Llama. The actual xenon concentrations in the liquid and gaseous phases were determined with the Impurity DEtector For Investigation of Xenon, Idefix, a mass spectrometer setup, and successful doping was confirmed. At the highest dopant concentration we find a doubling of Y, a tenfold reduction of τ 3 to ∼90 ns and a tenfold increase of λ att to over 6 m.


2022 ◽  
Vol 17 (01) ◽  
pp. C01034
Author(s):  
N. Gallice

Abstract The Deep Underground Neutrino Experiment (DUNE) will be the next generation long-baseline neutrino experiment. The far detector is designed as a complex of four LAr-TPC (Liquid Argon Time Projection Chamber) modules with 17 kt of liquid argon each. The development and validation of the first far detector technology is pursued through ProtoDUNE Single Phase (ProtoDUNE-SP), a 770 t LAr-TPC at CERN Neutrino Platform. Crucial in DUNE is the photon detection system that will ensure the trigger of non-beam events — proton decay, supernova neutrino burst and BSM searches — and will improve the timing and calorimetry for neutrino beam events. Doping liquid argon with xenon is a known technique to shift the light emitted by argon (128 nm) to a longer wavelength (178 nm) to ease its detection. The largest xenon doping test ever performed in a LAr-TPC was carried out in ProtoDUNE-SP. From February to May 2020, a gradually increasing amount of xenon was injected to also compensate for the light loss due to air contamination. The response of such a large TPC has been studied using the ProtoDUNE-SP Photon Detection System (PDS) and a dedicated setup installed before the run. With the first it was possible to study the light collection efficiency with respect to the track position, while with the second it was possible to distinguish the xenon light (178 nm) from the LAr light (128 nm). The light shifting mechanism proved to be highly efficient even at small xenon concentrations (<20 ppm in mass) furthermore it allowed recovering the light quenched by pollutants. The light collection improved far from the detection plane, enhancing the photon detector response uniformity along the drift direction and confirming a longer Rayleigh scattering length for 178 nm photons, with respect to 128 nm ones. The charge collection by the TPC was monitored proving that xenon up to 20 ppm does not impact its performance.


2022 ◽  
Vol 17 (01) ◽  
pp. P01002
Author(s):  
L. Polson ◽  
L. Kurchaninov ◽  
M. Lefebvre

Abstract The liquid argon ionization current in a sampling calorimeter cell can be analyzed to determine the energy of detected particles. In practice, experimental artifacts such as pileup and electronic noise make the inference of energy from current a difficult process. The beam intensity of the Large Hadron Collider will be significantly increased during the Phase-II long shut-down of 2025–2027. Signal processing techniques that are used to extract the energy of detected particles in the ATLAS detector will suffer a significant loss in performance under these conditions. This paper compares the presently used optimal filter technique to convolutional neural networks for energy reconstruction in the ATLAS liquid argon hadronic end cap calorimeter. In particular, it is shown that convolutional neural networks trained with an appropriately tuned and novel loss function are able to outperform the optimal filter technique.


2022 ◽  
Vol 17 (01) ◽  
pp. C01012
Author(s):  
I. Gil‐Botella

Abstract The Deep Underground Neutrino Experiment (DUNE) is a leading-edge experiment for long-baseline neutrino oscillation studies, neutrino astrophysics and nucleon decay searches. ProtoDUNE-Dual Phase (DP) is a 6 × 6 × 6 m3 liquid argon time-projection-chamber (LArTPC) operated at the CERN Neutrino Platform in 2019–2020 as a prototype of the DUNE far detector. In ProtoDUNE-DP, the scintillation and electroluminescence light produced by cosmic muons in the LArTPC is collected by photomultiplier tubes placed up to 7 m away from the ionizing track. In this paper, we present the performance of the ProtoDUNE-DP photon detection system, comparing different wavelength-shifting techniques and the use of xenon-doped LAr as a promising option for future large LArTPCs. The scintillation light production and propagation processes are analyzed and compared to simulations, improving understanding of the liquid argon properties.


2022 ◽  
Vol 17 (01) ◽  
pp. C01030
Author(s):  
D. Durnford ◽  
M.-C. Piro

Abstract Bubble chambers using liquid xenon (and liquid argon) have been operated (resp. planned) by the Scintillating Bubble Chamber (SBC) collaboration for GeV-scale dark matter searches and CEνNS from reactors. This will require a robust calibration program of the nucleation efficiency of low-energy nuclear recoils in these target media. Such a program has been carried out by the PICO collaboration, which aims to directly detect dark matter using C3F8 bubble chambers. Neutron calibration data from mono-energetic neutron beam and Am-Be source has been collected and analyzed, leading to a global fit of a generic nucleation efficiency model for carbon and fluorine recoils, at thermodynamic thresholds of 2.45 and 3.29 keV. Fitting the many-dimensional model to the data (34 free parameters) is a non-trivial computational challenge, addressed with a custom Markov Chain Monte Carlo approach, which will be presented. Parametric MC studies undertaken to validate this methodology are also discussed. This fit paradigm demonstrated for the PICO calibration will be applied to existing and future scintillating bubble chamber calibration data.


2022 ◽  
Vol 17 (01) ◽  
pp. P01005
Author(s):  
A. Abed Abud ◽  
B. Abi ◽  
R. Acciarri ◽  
M.A. Acero ◽  
M.R. Adames ◽  
...  

Abstract The ProtoDUNE-SP detector is a single-phase liquid argon time projection chamber (LArTPC) that was constructed and operated in the CERN North Area at the end of the H4 beamline. This detector is a prototype for the first far detector module of the Deep Underground Neutrino Experiment (DUNE), which will be constructed at the Sandford Underground Research Facility (SURF) in Lead, South Dakota, U.S.A. The ProtoDUNE-SP detector incorporates full-size components as designed for DUNE and has an active volume of 7 × 6 × 7.2 m3. The H4 beam delivers incident particles with well-measured momenta and high-purity particle identification. ProtoDUNE-SP's successful operation between 2018 and 2020 demonstrates the effectiveness of the single-phase far detector design. This paper describes the design, construction, assembly and operation of the detector components.


2022 ◽  
Vol 17 (01) ◽  
pp. P01018
Author(s):  
R. Acciarri ◽  
B. Baller ◽  
V. Basque ◽  
C. Bromberg ◽  
F. Cavanna ◽  
...  

Abstract The liquid argon time projection chamber (LArTPC) detector technology has an excellent capability to measure properties of low-energy neutrinos produced by the sun and supernovae and to look for exotic physics at very low energies. In order to achieve those physics goals, it is crucial to identify and reconstruct signals in the waveforms recorded on each TPC wire. In this paper, we report on a novel algorithm based on a one-dimensional convolutional neural network (CNN) to look for the region-of-interest (ROI) in raw waveforms. We test this algorithm using data from the ArgoNeuT experiment in conjunction with an improved noise mitigation procedure and a more realistic data-driven noise model for simulated events. This deep-learning ROI finder shows promising performance in extracting small signals and gives an efficiency approximately twice that of the traditional algorithm in the low energy region of ∼0.03–0.1 MeV. This method offers great potential to explore low-energy physics using LArTPCs.


2021 ◽  
Vol 2119 (1) ◽  
pp. 012122
Author(s):  
G V Kharlamov

Abstract The diffusion coefficients in gases and liquids calculated by the molecular dynamics method with the use of the hard absolutely rough elastic spheres model are compared with those calculated using the Lennard-Jones potential. It is shown that dependences of reduced diffusion coefficients on density are similar, but differ numerically for different intermolecular interaction models. The simulation results have been compared with the experimental data on the diffusion in gaseous and liquid argon and in liquid benzene.


Sign in / Sign up

Export Citation Format

Share Document