scholarly journals Development of a multiaxial deformation measure and creep-fatigue damage summation for multiple load cycle types in support of an improved creep-fatigue design method

2019 ◽  
Author(s):  
M. C. Messner ◽  
T. -L. Sham
2015 ◽  
Vol 63 (1) ◽  
pp. 107-111 ◽  
Author(s):  
J. Kuźniewski ◽  
Ł. Skotnicki ◽  
A. Szydło

Abstract This paper focuses on examinations of asphalt-cement mixtures (ACM). This is a recycled material which can be used in road pavement layers. In the article stiffness modulus tests and fatigue tests of asphalt-cement mixtures were shown. The authors decided to lead research on fatigue durability of asphalt-cement mixtures to set fatigue characteristics of these materials. So far in research or other works any adequate fatigue criterion for ACM mixtures has not been developed. As a result of the examinations a level of fatigue damage was suggested. For new fatigue damage a strain level in one million load cycle was estimated. Based on that a fatigue design criterion for asphalt-cement mixtures was estimated.


Author(s):  
Daniele Barbera ◽  
Haofeng Chen ◽  
Weiling Luan

This paper introduces the latest research and development of the Linear Matching Method (LMM) on the creep fatigue damage assessment of components subjected to high temperature and cyclic load conditions. The method varies from existing rule-based approaches in both the ASME Boiler and Pressure Vessel Code (NH) and the UK R5 high temperature assessment procedure, where the creep behavior/creep damage and cyclic plastic response /fatigue damage are analyzed separately. In support to these the extended Direct Steady Cycle Analysis (eDSCA) has been proposed to provide a more accurate description of the potentially dangerous interaction between creep and cyclic plasticity during the load cycle, and hence is able to accurately address creep enhanced plasticity and cyclically enhanced creep. The applications of the LMM eDSCA method for creep fatigue damage assessment to three practical problems are then outlined to demonstrate that the proposed direct method is capable of predicting an accurate component life due to creep fatigue and creep ratcheting damages by modeling cyclic plasticity and creep interaction using this new simplified direct method, providing a degree of accuracy and convenience in creep fatigue assessment hitherto unavailable and without the restrictions inherent in other methodologies.


Author(s):  
C. H. Luk ◽  
T. J. Wang

Engineering Criticality Assessment (ECA) is a procedure based on fracture mechanics that may be used to supplement the traditional S-N approach and determine the flaw acceptance and inspection criteria in fatigue and fracture design of risers and flowlines. A number of design codes provide guidance for this procedure, e.g. BS-7910:2005 [1]. However, more investigations and example studies are still needed to address the design implications for riser and flowline applications. This paper provides a review of the existing ECA methodology, presents a fracture mechanics design method for a wide range of riser and flowline fatigue problems, and shows flaw size results from steel catenary riser (SCR) and flowline (FL) examples. The first example is a deepwater SCR subjected to fatigue loads due to vessel motion and riser VIV. The second example is a subsea flowline subjected to thermal fatigue loads. The effects of crack re-characterization and material plasticity on the Level-2 and Level-3 ECA results of the SCR and flowline examples are illustrated.


2021 ◽  
Vol 173 ◽  
pp. 112830
Author(s):  
Wenhai Guan ◽  
Hyoseong Gwon ◽  
Takanori Hirose ◽  
Hisashi Tanigawa ◽  
Yoshinori Kawamura ◽  
...  
Keyword(s):  

Author(s):  
N. A. Zentuti ◽  
J. D. Booker ◽  
R. A. W. Bradford ◽  
C. E. Truman

An approach is outlined for the treatment of stresses in complex three-dimensional components for the purpose of conducting probabilistic creep-fatigue lifetime assessments. For conventional deterministic assessments, the stress state in a plant component is found using thermal and mechanical (elastic) finite element (FE) models. Key inputs are typically steam temperatures and pressures, with the three principal stress components (PSCs) at the assessment location(s) being the outputs. This paper presents an approach which was developed based on application experience with a tube-plate ligament (TPL) component, for which historical data was available. Though both transient as well as steady-state conditions can have large contributions towards the creep-fatigue damage, this work is mainly concerned with the latter. In a probabilistic assessment, the aim of this approach is to replace time intensive FE runs with a predictive model to approximate stresses at various assessment locations. This is achieved by firstly modelling a wide range of typical loading conditions using FE models to obtain the desire stresses. Based on the results from these FE runs, a probability map is produced and input(s)-output(s) functions are fitted (either using a Response Surface Method or Linear Regression). These models are thereafter used to predict stresses as functions of the input parameter(s) directly. This mitigates running an FE model for every probabilistic trial (of which there typically may be more than 104), an approach which would be computationally prohibitive.


Sign in / Sign up

Export Citation Format

Share Document