multiple load
Recently Published Documents


TOTAL DOCUMENTS

270
(FIVE YEARS 52)

H-INDEX

23
(FIVE YEARS 3)

Author(s):  
Olawale Ifayefunmi ◽  
Sivakumar D. ◽  
Amir Hafiz Sazali

Abstract The first set of test data on axial collapse of cone-cylinder assembly having multiple load indentation (MLI) and its accompanying numerical studies is presented in this paper. Two perfect and two imperfect steel cone-cylinders were prepared in pairs. The cone-cylinder models have the following geometric parameters: cone radius of 40 mm, cylinder radius of 70 mm,wall thickness of 0.5 mm and cone angle of 16.7°. Cone and cylinder part were combined using Metal Inert Gas (MIG) welding technique. Results show that the repeatability of the experiment was good (3% for the perfect and 7% for the imperfect). Also, numerical prediction tends to reproduce the test data with good accuracy. The error between both approches ranges from 1% to -8%. Furthermore, the influence of geometric parameters are also significant in determining the collapse load of this type of structure. Finally, the worst multiple load indentation (WMLI) was explored for steel cone-cylinders assembly using different number of load indentations. Results indicate that as the number of indents increases, the sensitivity of the cone-cylinder models to imperfection also increases. However, at different imperfection amplitude, A, two regions were observed; (i) the region where cone-cylinder with N = 8 is more sensitive (A < 1.5), and (ii) the region where N = 4 produce the worst imperfection (1.5 < A ≤ 1.68).


Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7801
Author(s):  
Ayman A. Aly ◽  
Bassem F. Felemban ◽  
Ardashir Mohammadzadeh ◽  
Oscar Castillo ◽  
Andrzej Bartoszewicz

In this paper, the problem of frequency regulation in the multi-area power systems with demand response, energy storage system (ESS) and renewable energy generators is studied. Dissimilarly to most studies in this field, the dynamics of all units in all areas are considered to be unknown. Furthermore time-varying solar radiation, wind speed dynamics, multiple load changes, demand response (DR), and ESS are considered. A novel dynamic fractional-order model based on restricted Boltzmann machine (RBM) and deep learning contrastive divergence (CD) algorithm is presented for online identification. The controller is designed by the dynamic estimated model, error feedback controller and interval type-3 fuzzy logic compensator (IT3-FLC). The gains of error feedback controller and tuning rules of the estimated dynamic model are extracted through the fractional-order stability analysis by the linear matrix inequality (LMI) approach. The superiority of a schemed controller in contrast to the type-1 and type-2 FLCs is demonstrated in various conditions, such as time-varying wind speed, solar radiation, multiple load changes, and perturbed dynamics.


Energies ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6555
Author(s):  
Songyao Wang ◽  
Zhisheng Zhang

In order to improve the accuracy of the multiple load forecasting of a regional integrated energy system, a short-term multiple load forecasting model based on the quantum weighted GRU and multi-task learning framework is proposed in this paper. Firstly, correlation analysis is carried out using a maximum information coefficient to select the input of the model. Then, a multi-task learning architecture is constructed based on the quantum weighted GRU neural network, and the coupling information among multiple loads is learned through the sharing layer in order to improve the prediction accuracy of multiple loads. Finally, the PSO algorithm is used to optimize the parameters of the quantum weighted GRU. The simulation data of a regional integrated energy system in northern China are used to predict the power and cooling loads on summer weekdays and rest days, and the results show that, compared with the LSTM, GRU and single task learning QWGRU models, the proposed model is more effective in the multiple load forecasting of a regional integrated energy system.


Actuators ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 214
Author(s):  
Jiawei Chen ◽  
Yan Li ◽  
Xiang Xu ◽  
Xinbo Chen

With the rapid development of cities, the automated and intelligent garbage transportation has become an important direction for technological innovation of sanitation vehicles. In this paper, a vehicle-mounted trash can-handling robot is proposed. In order to reduce the cost of the robot and increase the loading capacity of the intelligent sanitation vehicles, a lightweight design method is proposed for the truss structure of the robot. Firstly, the parameters of the robot that are related to the load are optimized by multi-objective parameter optimization based on particle swarm optimization. Then, the material distribution of the truss structure is optimized by topology optimization under multiple load cases. Finally, the thickness of the truss structure parts is optimized by discrete optimization under multiple load cases. The optimization results show that the mass of the truss structure is reduced by 8.72%, the inherent frequency is increased by 61.08%, and the maximum stress is reduced by 10.98%. The optimization results achieve the goal of performance optimization of the intelligent sanitation vehicle, and prove the feasibility of the proposed lightweight design method.


2021 ◽  
pp. 1-13
Author(s):  
An Thai Nguyen ◽  
Trong Nghia Le ◽  
Huy Anh Quyen ◽  
Minh Vu Nguyen Hoang ◽  
Phung Bao Long Nguyen
Keyword(s):  

Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3128
Author(s):  
Syed Ali Abbas Kazmi ◽  
Usama Ameer Khan ◽  
Waleed Ahmad ◽  
Muhammad Hassan ◽  
Fahim Ahmed Ibupoto ◽  
...  

Modern distribution mechanisms within the smart grid paradigm are considered both reliable in nature and interconnected in topology. In this paper, a multiple-criteria-based sustainable planning (MCSP) approach is presented that serves as a future planning tool for interconnected distribution mechanisms and aims to find a feasible solution among conflicting criteria of various genres. The proposed methodology is based on three stages. In the stage 1, a weighted voltage stability index (VSI_W) and loss minimization condition (LMC) based approach aims at optimal asset optimization (sitting and sizing). In this stage, an evaluation of alternatives (solutions) is carried out across four dimensions (technical, economic, environmental, and social) of performance metrics. The assets considered in the evaluations include distributed generation (DG), renewable DGs, i.e., photovoltaic (PV), wind, and distributed static compensator (D-STATCOM) units. In the stage 2, various multicriteria decision-making (MCDM) methodologies are applied to ascertain the best trade-off among the available solutions in terms of techno-cost (economic) (TCPE), environment-o-social (ESPE), and techno-economic-environmental-socio (TEES) performance evaluations (OPE). In the stage 3, the alternatives are evaluated across multiple load growth horizons of 5 years each. The proposed MCSP approach is evaluated across a mesh-configured 33-bus active distribution network (ADN) and an actual NUST (which is a university in Islamabad, Pakistan) microgrid (MG), with various variants of load growth. The numerical findings of the proposed MCSP approach are compared with reported works the literature supports its validity and can serve as an important planning tool for interconnected distribution mechanisms for researchers and planning engineers.


2021 ◽  
Author(s):  
Bradley James Greenland

Aircraft landing gear structural designs involves a balance of weight, cost and robustness while not compromising on safety. On some large commercial aircraft, the introduction of a second main supporting brace has led to an indeterminate structure in that there is redundancy in the load paths. This introduces two major challenges for structural design. The first challenge involves the introduction of a multiple load path. Understanding load path in the landing gear is critical in order to optimize the structure for weight. This report focuses on analysis techniques geared to resolving this indeterminate load path in order to mitigate this risk and optimize the design. The second major challenge is introduced by a compressive load in one of the braces during an in flight airload condition which impedes the ability for the landing gear to freefall, which is a requirement in aircraft design. Solving this problem involves introducing a pretension in the brace by force shortening the geometry. An indeterminate design introduces increased complexity and requires more simulation and analysis than that of a determinant design in order to accomplish the optimization demanded by the aerospace industry.


2021 ◽  
Author(s):  
Bradley James Greenland

Aircraft landing gear structural designs involves a balance of weight, cost and robustness while not compromising on safety. On some large commercial aircraft, the introduction of a second main supporting brace has led to an indeterminate structure in that there is redundancy in the load paths. This introduces two major challenges for structural design. The first challenge involves the introduction of a multiple load path. Understanding load path in the landing gear is critical in order to optimize the structure for weight. This report focuses on analysis techniques geared to resolving this indeterminate load path in order to mitigate this risk and optimize the design. The second major challenge is introduced by a compressive load in one of the braces during an in flight airload condition which impedes the ability for the landing gear to freefall, which is a requirement in aircraft design. Solving this problem involves introducing a pretension in the brace by force shortening the geometry. An indeterminate design introduces increased complexity and requires more simulation and analysis than that of a determinant design in order to accomplish the optimization demanded by the aerospace industry.


2021 ◽  
Vol 11 (10) ◽  
pp. 4434
Author(s):  
Tuomo Poutanen ◽  
Sampsa Pursiainen ◽  
Tim Länsivaara

This study concerns the combination of the permanent and the variable loads in the structural design. The Eurocodes are used as a reference. Three new findings are presented: (1) In each physical structure, and in every load pair of the permanent load and the variable load, the maximum variable load is the service time load, the 50-year load, i.e., the high value of the variable load. Therefore, no load reduction should be applied in the combination. (2) The governing hypothesis is the independent load combination (ILC) with random load pairs and random single loads. However, the load pairs are not independent as normally one variable load occurs simultaneously in multiple structures and in multiple load pairs inducing correlation between the loads, ultimately full correlation, and the dependent load combination (DLC). (3) In the current Eurocodes, the design load combination applies to one load pair only. However, one design load combination virtually always applies to multiple load pairs which demands using the DLC. The authors have explained earlier that the permanent and variable loads should be combined dependently as the ILC contradicts the physics. The new findings support this conclusion. Changing the current codes towards the DLC approach would simplify them and eases their use in the structural design work.


Sign in / Sign up

Export Citation Format

Share Document