scholarly journals TECHNICAL STATUS OF THE RADIOACTIVE WASTE REPOSITORY: A DEMONSTRATION PROJECT FOR SOLID RADIOACTIVE WASTE DISPOSAL.

1971 ◽  
Author(s):  
F.L. Culler
Author(s):  
Juyoul Kim ◽  
Sukhoon Kim ◽  
Jin Beak Park ◽  
Sunjoung Lee

In the Korean LILW (Low- and Intermediate-Level radioactive Waste) repository at Gyeongju city, the degradation of organic wastes and the corrosion of metallic wastes and steel containers would be important processes that affect repository geochemistry, speciation and transport of radionuclides during the lifetime of a radioactive waste disposal facility. Gas is generated in association with these processes and has the potential threat to pressurize the repository, which can promote the transport of groundwater and gas, and consequently radionuclide transport. Microbial activity plays an important role in organic degradation, corrosion and gas generation through the mediation of reduction-oxidation reactions. The Korean research project on gas generation is being performed by Korea Radioactive Waste Management Corporation (hereafter referred to as “KRMC”). A full-scale in-situ experiment will form a central part of the project, where gas generation in real radioactive low-level maintenance waste from nuclear power plants will be done as an in-depth study during ten years at least. In order to examine gas generation issues from an LILW repository which is being constructed and will be completed by the end of December, 2012, two large-scale facilities for the gas generation experiment will be established, each equipped with a concrete container carrying on 16 drums of 200 L and 9 drums of 320 L of LILW from Korean nuclear power plants. Each container will be enclosed within a gas-tight and acid-proof steel tank. The experiment facility will be fully filled with ground water that provides representative geochemical conditions and microbial inoculation in the near field of repository. In the experiment, the design includes long-term monitoring and analyses for the rate and composition of gas generated, and aqueous geochemistry and microbe populations present at various locations through on-line analyzers and manual periodical sampling. A main schedule for establishing the experiment facility is as follows: Completion of the detailed design until the second quarter of the year 2010; Completion of the manufacture and on-site installation until the second quarter of the year 2011; Start of the operation and monitoring from the third quarter of the year 2011.


1993 ◽  
Vol 333 ◽  
Author(s):  
A.V. Chambers

ABSTRACTCalculation of the movement of chemical fronts over long timescales could be important in underpinning performance assessments for radioactive waste disposal. A quasi-stationary state model, MARQUISS (Mineral Alteration Reactions using the QUasI-Statίonary State approximation), has been developed to achieve this objective by avoiding many of the problems encountered using more conventional approaches to coupled chemistry and transport calculations. MARQUISS simulates advective, dispersive and diffusive transport through a one-dimensional porous medium coupled with the chemical kinetics of mineral precipitation and dissolution. A description of its development and verification for simple systems is provided, together with its application in a study of the migration of mineral alteration zones at a natural analogue for a cementitious radioactive waste repository located at Maqarin in northern Jordan.


1986 ◽  
Vol 23 (1) ◽  
pp. 13 ◽  
Author(s):  
W. J. Arthur ◽  
O. D. Markham ◽  
C. R. Groves ◽  
B. L. Keller ◽  
D. K. Halford

Sign in / Sign up

Export Citation Format

Share Document