alteration zones
Recently Published Documents


TOTAL DOCUMENTS

237
(FIVE YEARS 67)

H-INDEX

23
(FIVE YEARS 4)

Mining ◽  
2021 ◽  
Vol 2 (1) ◽  
pp. 1-12
Author(s):  
Vahid Khosravi ◽  
Aref Shirazi ◽  
Adel Shirazy ◽  
Ardeshir Hezarkhani ◽  
Amin Beiranvand Pour

The eastern Lut block of Iran has a high potential for porphyry copper mineralization due to the subduction tectonic regime. It is located in an inaccessible region and has harsh arid conditions for traditional mineral exploration campaigns. The objective of this study is to use Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) remote sensing data for porphyry copper exploration in Simorgh Area, eastern Lut block of Iran. Hydrothermal alteration zones such as argillic, phyllic and propylitic zones associated with porphyry copper systems in the study were identified using false color composition (FCC), band ratio (BR), principal component analysis (PCA) and minimal noise fraction (MNF). The thematic alteration layers extracted from FCC, BR, PCA and MNF were integrated using hybrid Fuzzy-AHP model to generate a porphyry copper potential map for the study area. Four high potential zones were identified in the central, western, eastern and northeastern of the study area. Fieldwork was used to validate the approach used in this study. This investigation exhibits that the use of hybrid Fuzzy-AHP model for the identification of hydrothermal alteration zones associated with porphyry copper systems that is typically applicable to ASTER data and can be used for porphyry copper potential mapping in many analogous metallogenic provinces.


Minerals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1424
Author(s):  
Ping Qi ◽  
Yaotian Yin ◽  
Sheng Jin ◽  
Wenbo Wei ◽  
Liuyang Xu ◽  
...  

Cimabanshuo deposit is a newly discovered porphyry copper (Cu) deposit with giant metallogenic potential, found in the western segment of the Gangdese metallogenic belt, Tibet. The average elevation of the deposit is greater than 5500 m and the terrain on which it is found is steep and complex. Therefore, it is untraversed, and the existing exploration works on it are weak. We used 59 AMT sites belonging to an array covering the main, proven mineralization zone and ore bodies of this deposit for an analysis of its underground electrical structure. Dimensionality and strike analysis revealed the apparent three-dimensional (3D) features near the Cu ore bodies. 3D inversion with topography was conducted for the AMT array data. A large range of high-resistivity anomaly (~500–2000 Ωm) appears beneath the proven Cu mineralization zone and ore bodies, which is interpreted as intrusive rocks with potassic alteration. Although containing chalcopyrite, it is characterized by middle–high resistivity due to a low sulfide content and poor connectivity. Moreover, a series of scattered conductors (~10–300 Ωm) around the Cu ore bodies are distributed in the shallow layer from near the surface to ~200 m, possibly indicating phyllic alteration containing pyritization and connected metal sulfides. The proven ore bodies of Cimabanshuo are mainly located at the junction regions between high-resistivity intrusive rocks and high-conductivity sericitization alteration zones. According to this research, the 3D inversion with topography of AMT data can visually display the 3D distribution of intrusive rocks and alteration zones beneath porphyry Cu deposits in high-elevation regions, and provides a reference for further exploration works.


2021 ◽  
Vol 6 (2) ◽  
pp. 86
Author(s):  
Bayu Raharja ◽  
Agung Setianto ◽  
Anastasia Dewi Titisari

Using remote sensing data for hydrothermal alteration mapping beside saving time and reducing  cost leads to increased accuracy. In this study, the result of multispectral remote sensing tehcniques has been compare for manifesting hydrothermal alteration in Kokap, Kulon Progo. Three multispectral images, including ASTER, Landsat 8, and Sentinel-2, were compared in order to find the highest overall accuracy using principle component analysis (PCA) and directed component analysis (DPC). Several subsets band combinations were used as PCA and DPC input to targeting the key mineral of alteration. Multispectral classification with the maximum likelihood algorithm was performed to map the alteration types based on training and testing data and followed by accuracy evaluation. Two alteration zones were succeeded to be mapped: argillic zone and propylitic zone. Results of these image classification techniques were compared with known alteration zones from previous study. DPC combination of band ratio images of 5:2 and 6:7 of Landsat 8 imagery yielded a classification accuracy of 56.4%, which was 5.05% and 10.13% higher than those of the ASTER and Sentinel-2 imagery. The used of DEM together with multispectral images was increase the accuracy of hydrothermal alteration mapping in the study area.


Minerals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1279
Author(s):  
Santiago Nicolás Maza ◽  
Gilda Collo ◽  
Diego Morata ◽  
Carolina Cuña-Rodriguez ◽  
Marco Taussi ◽  
...  

Detailed mineralogical analyses in areas with surface hydrothermal alteration zones associated with recent volcanism (<1 Ma) in the Central Andean Volcanic Zone could provide key information to unravel the presence of hidden geothermal systems. In the Cordón de Inacaliri Volcanic Complex, a geothermal field with an estimated potential of ~1.08 MWe·km−2 has been recently discovered. In this work, we focus on the hydrothermal alteration zones and discharge products of this area, with the aim to reconstruct the geological processes responsible for the space-time evolution leading to the geothermal records. We identified (1) discharge products associated with acid fluids that could be related to: (i) acid-sulfate alteration with alunite + kaolinite + opal CT + anatase, indicating the presence of a steam-heated blanket with massive fine-grained silica (opal-CT), likely accumulated in mud pots where the intersection of the paleowater table with the surface occurred; (ii) argillic alteration with kaolinite + hematite + halloysite + smectite + I/S + illite in the surrounding of the acid-sulfate alteration; and (2) discharge products associated with neutral-alkaline fluids such as: (i) discontinuous pinnacle-like silica and silica deposits with laterally developed coarse stratification which, together with remaining microorganisms, emphasize a sinter deposit associated with alkaline/freshwater/brackish alkaline-chlorine water bodies and laterally associated with (ii) calcite + aragonite deriving from bicarbonate waters. The scarce presence of relics of sinter deposits, with high degree crystallinity phases and diatom remnants, in addition to alunite + kaolinite + opal CT + anatase assemblages, is consistent with a superimposition of a steam-heated environment to a previous sinter deposit. These characters are also a distinguishing feature of paleosurface deposits associated with the geothermal system of the Cordón de Inacaliri Volcanic Complex. The presence of diatoms in heated freshwater bodies at 5100 m a.s.l. in the Atacama Desert environment could be related with the last documented deglaciation in the area (~20–10 ka), an important factor in the recharge of the hidden geothermal systems of the Pabelloncito graben.


2021 ◽  
Vol 13 (22) ◽  
pp. 4492
Author(s):  
Mohamed Abdelkareem ◽  
Nassir Al-Arifi

The Arabian Nubian Shield (ANS) contains a variety of gold deposits in the form of veins and veinlets formed by hydrothermal fluids. Characterizing potential areas of hydrothermal alteration zones therefore provides a significant tool for prospecting for hydrothermal gold deposits. In this study, we develop a model of exploration for hydrothermal mineral resources in an area located in the ANS, Egypt, using multiple criteria derived from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), Landsat-Operational Land Imager (OLI), and Sentinel-2 data and field work through GIS-based fuzzy logic approach. The hydrothermal alteration zones (HAZs) map extracted from combining mineral indices, spectral bands, and ratios is consistent with observed argillic alteration zones around the mineralized veins. Combining HAZs and lineament density led to identification of six zones based on their mineralization potential, and provides a tool for successful reconnaissance prospecting for future hydrothermal mineral deposits. The detected zones are labeled as excellent, very high, high, moderate, low, and very low, based on their potential for Au production, and the predictive excellent and very high zones cover about 1.6% of the study area. This model also shows that target prospective zones are quartz veins controlled by NNW-SSE trending fracture/fault zones all crosscutting Precambrian rocks of the ANS. Field observations and petrographic and X-ray diffraction analyses were performed to validate the mineral prospective map and revealed that quartz veins consist of gold–sulfide mineralization (e.g., gold, pyrite, chalcopyrite, and sphalerite). Consistency between the high potential hydrothermal alterations zones (HAZs) and the location of gold mineralization is achieved.


Minerals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1235
Author(s):  
Mastoureh Yousefi ◽  
Seyed Hasan Tabatabaei ◽  
Reyhaneh Rikhtehgaran ◽  
Amin Beiranvand Pour ◽  
Biswajeet Pradhan

The application of machine learning (ML) algorithms for processing remote sensing data is momentous, particularly for mapping hydrothermal alteration zones associated with porphyry copper deposits. The unsupervised Dirichlet Process (DP) and the supervised Support Vector Machine (SVM) techniques can be executed for mapping hydrothermal alteration zones associated with porphyry copper deposits. The main objective of this investigation is to practice an algorithm that can accurately model the best training data as input for supervised methods such as SVM. For this purpose, the Zefreh porphyry copper deposit located in the Urumieh-Dokhtar Magmatic Arc (UDMA) of central Iran was selected and used as training data. Initially, using ASTER data, different alteration zones of the Zefreh porphyry copper deposit were detected by Band Ratio, Relative Band Depth (RBD), Linear Spectral Unmixing (LSU), Spectral Feature Fitting (SFF), and Orthogonal Subspace Projection (OSP) techniques. Then, using the DP method, the exact extent of each alteration was determined. Finally, the detected alterations were used as training data to identify similar alteration zones in full scene of ASTER using SVM and Spectral Angle Mapper (SAM) methods. Several high potential zones were identified in the study area. Field surveys and laboratory analysis were used to validate the image processing results. This investigation demonstrates that the application of the SVM algorithm for mapping hydrothermal alteration zones associated with porphyry copper deposits is broadly applicable to ASTER data and can be used for prospectivity mapping in many metallogenic provinces around the world.


2021 ◽  
Vol 2117 (1) ◽  
pp. 012003
Author(s):  
F R Widiatmoko ◽  
E Kusdarini ◽  
M A Irwanto ◽  
A Zamroni ◽  
H L Sunan ◽  
...  

Abstract The Jawara Field in Jember Regency is a location where it is indicated that there are precious metal deposits in the form of porphyry type Gold and Copper. In this study, the focus is more on the search for metal mineral deposits related to the elements of Gold (Au) and Copper (Cu), namely the metal mineral chalcopyrite (CuFeS2) as the main carrier minerals for Au, Cu, Ag, as impurities. The results of alteration products in the form of weathered minerals are also the focus of research. The analysis used to detect metallic element content and the presence of metallic and non-metallic minerals is by petrographic analysis, mineragraphy analysis, sediment grain analysis and geochemical analysis. Based on the results of the mineragraphy analysis, it was proven that the metal mineral chalcopyrite was found in the JAFA 6 BPS sample which is a carrier mineral for the metallic copper element and silver was also found in JAFA 2 ALT. In addition, the results of the sediment grain analysis also found metal mineral grains and metal elements, namely copper and iron elements in all JAFA samples. The results of petrographic analysis show that the weathered minerals in the form of kaolinite, alunite, and smectite are products of hydrothermal alteration activities. Based on these results, the research area is divided into 3 alteration zones, namely potassic, propylitic, and argillic alteration zones. The results of the geochemical analysis showed that the highest levels of copper were found in JAFA 5 as much as 13.9 ppm and the highest levels of iron in JAFA 6 were 390.8 ppm. From the results of the analysis, it can be concluded that it is true that there are metal mineral deposits and metal elements in the form of sediment grains and porphyry-type Au and Cu elements.


Sign in / Sign up

Export Citation Format

Share Document