scholarly journals ENGINEERING DEVELOPMENT OF FLUID-BED FLUORIDE VOLATILITY PROCESSES. PART 5. DESCRIPTION OF A PILOT-SCALE FACILITY FOR URANIUM DIOXIDE-PLUTONIUM DIOXIDE PROCESSING STUDIES

1964 ◽  
Author(s):  
G.J. Vogel ◽  
E.L. Carls ◽  
W.J. Mecham
2018 ◽  
Author(s):  
Alex Resnick ◽  
Katherine Mitchell ◽  
Jungkyu Park ◽  
Hannah Maier ◽  
Eduardo B. Farfán ◽  
...  

The present study employs a molecular dynamics simulation to explore thermal transport in various oxide nuclear fuels with defects such as uranium oxide and plutonium oxide. In particular, the effect of vacancy and substitutional defects on the thermal transport in actinide oxides are investigated. It is found that the thermal conductivities of these oxide nuclear fuels are significantly reduced by the presence of vacancy defects. In spite of their small size, oxygen vacancy is shown to alter the thermal conductivity of oxide fuels greatly; 0.1% oxygen vacancy reduces the thermal conductivity of plutonium dioxide by more than 10% when the number of unit cell in length is 100. It was shown that the missing of larger atoms alters the thermal conductivity of actinide oxides more significantly. For the case of uranium dioxide, 0.1% uranium vacancies decrease the thermal conductivity by 24.6% while the same concentration of oxygen vacancies decreases the thermal conductivity of uranium dioxide by 19.4%. However, the uranium substitutional defects are shown to have a minimal effect on the thermal conductivity of plutonium dioxide because of the small change in the atomic mass.


Author(s):  
Xiao Rui ◽  
Baosheng Jin ◽  
Yunquan Xiong ◽  
Yufeng Duan ◽  
Zhaoping Zhong ◽  
...  

Coal gasification process and equipment feasibility research were carried out in a 2 MW thermal input pressurized spout-fluid bed pilot-scale gasifier and a long-time-run test was performed to study the effects of operating parameters on coal partial gasification behaviors. The test results have demonstrated the feasibility of the gasifier to provide suitable fuel gas and residual char for downstream system of 2G PFBC-CC. The concentration of methane decreased at higher gasification temperature due to the secondary cracking of methane while the carbon conversion increased, and the concentration of hydrogen increased with an increase of steam flow rate. The main experimental results were compared with those of pilot-scale facilities in the world.


1964 ◽  
Vol 20 (3) ◽  
pp. 259-265 ◽  
Author(s):  
I. E. Knudsen ◽  
H. E. Hootman ◽  
N. M. Levitz

Sign in / Sign up

Export Citation Format

Share Document