scholarly journals Spent fuel assembly hardware: Characterization and 10 CFR 61 classification for waste disposal: Volume 3, Calculated activity profiles of spent nuclear fuel assembly hardware for boiling water reactors

1989 ◽  
Author(s):  
S Short ◽  
A Luksic ◽  
M Schutz
2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Young-Hwan Kim ◽  
Yung-Zun Cho

We have developed a practical-scale dry disassembling process to dismantle PWR (Pressurized Water Reactor) spent nuclear fuel assembly in the order of several tens of kilograms of heavy metal/batch to supply rod-cuts (cladding tube and UO2 pellets) for mechanical decladding process. Dry head-end disassembling process has advantages over the wet head-end process because of the lower risk of proliferation and treatment of spent fuel with relatively high heat and radioactivity. This study describes the main design considerations for the disassembling process of the spent nuclear fuel assembly during the dry head-end process. The down-ender, dismantling, extraction, and cutting technologies are analyzed and models have been designed for testing. The purpose of dry head-end disassembly process is to test the main device performance and to obtain scale-up data for practical-scale disassembling. With this in mind, design considerations were analyzed based on remoteness, and basic verification tests were performed. However, the authors used simulated fuel, instead of the actual spent fuel, owing to a lack of joint determination. In addition, in the present study, we did not consider the heat generated from minor actinides or the radioactivity of the fission product; these aspects will be considered in a future study. During the basic test performed in this study, a simulated assembly was completely disassembled using new methods, such as dismantling, extraction, and cutting processes. The practical-scale dry disassembling technology can be tested using scale-up data for reuse of the spent fuel.


2021 ◽  
Author(s):  
SAEHANSOL KANG ◽  
Donghyun Kim ◽  
Yoon-suk Chang ◽  
Sanghwan Lee

1980 ◽  
Vol 49 (2) ◽  
pp. 520-524 ◽  
Author(s):  
A. G. Zelenkov ◽  
S. V. Pirozhkov ◽  
Yu. F. Rodionov ◽  
I. K. Shvetsov

2019 ◽  
pp. 44-50
Author(s):  
A. Smaizys ◽  
E. Narkunas ◽  
V. Rudychev ◽  
Y. Rudychev

The radiation parameters such as radionuclide content and activities, fluxes and energy spectrum of gamma and neutrons of spent nuclear fuel are essential when planning further spent fuel management options – interim wet or dry storage or disposal into a geological repository. Radiation parameters determine the design of a storage or disposal facility, what materials, structures and thicknesses of structures should be used to provide adequate biological shielding. Experimental measurements of spent fuel radiation parameters are rather complicated and expensive, therefore numerical methods are widely used. Various computer codes (APOLLO, BOXER, CASMO, FISPACT, ORIGEN-S, WIMS, etc.) have been developed to simulate the irradiation processes of nuclear fuel and to obtain resulting radiation parameters. Irrespective of the used computer code, the input data firstly must be entered into that code. When simulating nuclear fuel irradiation and burn-up in the reactor core, the geometrical parameters of the fuel assembly, materials’ data (chemical compositions, densities), the operating parameters of the reactor (power, operation time, coolant parameters, etc.) shall be entered into the program as initial data. Fairly often approximations of the input data are performed, for example, fuel rods in a fuel assembly are homogenized and geometrically described as a solid cylinder, the reactor operation time is assumed as continuous and at constant power. The particularity of the input data and accepted assumptions depend on what initial information is available and on the capabilities of the computer code. The modelled spent fuel radiation parameters depend not only on the input data and assumptions, but also on the cross-section databases that are used in computer codes. Computer codes TRITON, ORIGEN-S and FISPACT have been used to model the concentration of actinides and fission products in the spent fuel from the RBMK-1000 reactor. The obtained results are compared and possible reasons for the differences in the modelling results are discussed.


Sign in / Sign up

Export Citation Format

Share Document