scholarly journals Kootenai River Wildlife Habitat Enhancement Project : Long-term Bighorn Sheep/Mule Deer Winter and Spring Habitat Improvement Project : Wildlife Mitigation Project, Libby Dam, Montana : Management Plan.

1990 ◽  
Author(s):  
Chis Yde
2021 ◽  
Vol 9 ◽  
Author(s):  
Marc-Antoine F. Leclerc ◽  
Lori D. Daniels ◽  
Allan L. Carroll

Sustainable forest management strategies include emulating historical disturbance regimes to achieve multiple objectives. Partial-harvesting strategies are used to overcome conflicts between timber production and wildlife habitat conservation; however, the potential impacts on complex disturbance interactions and ecological functions remain largely unknown. In 1984, a controlled experiment was initiated in the dry forests of central British Columbia, Canada, to test partial harvesting intended to enhance mule deer habitat while allowing timber extraction. To determine the short- and long-term impacts on complex disturbance regimes, we quantified changes in forest structure and susceptibility to western spruce budworm, Douglas-fir beetle, and wildfire. We compared structural attributes in 2014 (30 years after the first harvest) and 2015 (1 year after the second harvest) in treated forests, and contrasted them with control forests that were measured in 2015. In the short term (1 year post-harvest), partial harvesting altered forest structure by reducing total canopy cover, subcanopy tree density and basal area, and increasing the abundance of large woody surface fuels. In the long term (30 years post-harvest), the forest canopy attributes did not differ between the treatment and control areas, partly due to increased growth of subcanopy trees. Harvesting had little impact on forest susceptibility to western spruce budworm. Susceptibility to Douglas-fir beetle was lower in the short term due to fewer available mature host trees, but increased to levels similar to the control forest over the long term. Reduced canopy fuels and increased canopy base height decreased the likelihood of crown fire in favor of surface fire. In the long term, canopy fuels and likelihood of crown fire recovered, but woody fuel loads remained low after 30 years. Harvesting to enhance mule deer habitat interacts with biotic and abiotic disturbances in the short and long term. Potential cascading affects depended more on the decision to remove harvesting residuals to mitigate potential Douglas-fir beetle infestations and wildfire than on time since treatment. Provided partial harvesting occurs at intervals ≤ 30 years and residuals are immediately removed, timber extraction and mule deer habitat can be compatible with complex disturbance regimes and sustainable forest management.


1997 ◽  
Vol 33 (2) ◽  
pp. 377-382 ◽  
Author(s):  
Randall S. Singer ◽  
David A. Jessup ◽  
Ian A. Gardner ◽  
Walter M. Boyce

2020 ◽  
Author(s):  
Orsolya Valkó ◽  
Balázs Deák ◽  
Péter Török ◽  
Katalin Tóth ◽  
Réka Kiss ◽  
...  

AbstractSowing grass seeds generally supports the rapid development of a closed perennial vegetation, which makes the method universally suitable for fast and effective landscape-scale restoration of grasslands. However, sustaining the recovered grasslands, and increasing their diversity is a challenging task. Understanding the role of seed bank compositional changes and vegetation dynamics contributes to designating management regimes that support the establishment of target species and suppress weeds. Our aim was to reveal the effect of post-restoration management on the vegetation and seed bank dynamics in grasslands restored in one of the largest European landscape-scale restoration projects. Eight years after restoration we sampled the vegetation and seed bank in a total of 96 plots located in 12 recovered grasslands in the Great Hungarian Plain. In each recovered grassland stand we designated a mown (mown from Year 1 to Year 8) and an abandoned sample site (mown from Year 1 to Year 3 then abandoned from Year 4 to Year 8). Mown and abandoned sites showed divergent vegetation and seed bank development. Abandonment led to the decline of sown grasses and higher cover of weeds, especially in the alkaline grasslands. Our study confirmed that seed bank has a limited contribution to the maintenance of biodiversity in both grassland types. We found that five years of abandonment had a larger effect on the seed bank than on the vegetation. We stress that long-term management is crucial for controlling the emergence of the weeds from their dense seed bank in restored grasslands.Implications for practiceSeed sowing of grass mixtures can be a feasible tool for restoring grasslands at large scales. However, the developed vegetation usually has low biodiversity and a high seed density of weeds is typical in the soil seed bank even several years after the restoration. Therefore, post-restoration management is necessary for suppressing weeds both aboveground and belowground.We recommend to design the long-term management of the sites subjected to grassland restoration already in the planning phase of the restoration projects and ensure that the management plan is ecologically and economically feasible.We recommend to complement the monitoring of vegetation with the analysis of soil seed bank for evaluating restoration success.


Sign in / Sign up

Export Citation Format

Share Document