scholarly journals Implementation of the Immersed Boundary Method in the Weather Research and Forecasting model

2006 ◽  
Author(s):  
Katherine Ann Lundquist
2010 ◽  
Vol 138 (3) ◽  
pp. 796-817 ◽  
Author(s):  
Katherine A. Lundquist ◽  
Fotini Katopodes Chow ◽  
Julie K. Lundquist

Abstract This paper describes an immersed boundary method that facilitates the explicit resolution of complex terrain within the Weather Research and Forecasting (WRF) model. Mesoscale models, such as WRF, are increasingly used for high-resolution simulations, particularly in complex terrain, but errors associated with terrain-following coordinates degrade the accuracy of the solution. The use of an alternative-gridding technique, known as an immersed boundary method, alleviates coordinate transformation errors and eliminates restrictions on terrain slope that currently limit mesoscale models to slowly varying terrain. Simulations are presented for canonical cases with shallow terrain slopes, and comparisons between simulations with the native terrain-following coordinates and those using the immersed boundary method show excellent agreement. Validation cases demonstrate the ability of the immersed boundary method to handle both Dirichlet and Neumann boundary conditions. Additionally, realistic surface forcing can be provided at the immersed boundary by atmospheric physics parameterizations, which are modified to include the effects of the immersed terrain. Using the immersed boundary method, the WRF model is capable of simulating highly complex terrain, as demonstrated by a simulation of flow over an urban skyline.


2018 ◽  
Vol 146 (9) ◽  
pp. 2781-2797 ◽  
Author(s):  
Jingyi Bao ◽  
Fotini Katopodes Chow ◽  
Katherine A. Lundquist

Abstract The Weather Research and Forecasting (WRF) Model is increasingly being used for higher-resolution atmospheric simulations over complex terrain. With increased resolution, resolved terrain slopes become steeper, and the native terrain-following coordinates used in WRF result in numerical errors and instability. The immersed boundary method (IBM) uses a nonconformal grid with the terrain surface represented through interpolated forcing terms. Lundquist et al.’s WRF-IBM implementation eliminates the limitations of WRF’s terrain-following coordinate and was previously validated with a no-slip boundary condition for urban simulations and idealized terrain. This paper describes the implementation of a log-law boundary condition into WRF-IBM to extend its applicability to general atmospheric complex terrain simulations. The implementation of the improved WRF-IBM boundary condition is validated for neutral flow over flat terrain and the complex terrain cases of Askervein Hill, Scotland, and Bolund Hill, Denmark. First, comparisons are made to similarity theory and standard WRF results for the flat terrain case. Then, simulations of flow over the moderately sloped Askervein Hill are used to demonstrate agreement between the IBM and terrain-following WRF results, as well as agreement with observations. Finally, Bolund Hill simulations show that WRF-IBM can handle steep topography (standard WRF fails) and compares well to observations. Overall, the new WRF-IBM boundary condition shows improved performance, though the leeside representation of the flow can be potentially further improved.


2020 ◽  
Vol 148 (2) ◽  
pp. 577-595 ◽  
Author(s):  
David J. Wiersema ◽  
Katherine A. Lundquist ◽  
Fotini Katopodes Chow

Abstract Improvements to the Weather Research and Forecasting (WRF) Model are made to enable multiscale simulations over highly complex terrain with dynamically downscaled boundary conditions from the mesoscale to the microscale. Over steep terrain, the WRF Model develops numerical errors that are due to grid deformation of the terrain-following coordinates. An alternative coordinate system, the immersed boundary method (IBM), has been implemented into WRF, allowing for simulations over highly complex terrain; however, the new coordinate system precluded nesting within mesoscale simulations using WRF’s native terrain-following coordinates. Here, the immersed boundary method and WRF’s grid-nesting framework are modified to seamlessly work together. This improved framework for the first time allows for large-eddy simulation over complex (urban) terrain with IBM to be nested within a typical mesoscale WRF simulation. Simulations of the Joint Urban 2003 field campaign in Oklahoma City, Oklahoma, are performed using a multiscale five-domain nested configuration, spanning horizontal grid resolutions from 6 km to 2 m. These are compared with microscale-only simulations with idealized lateral boundary conditions and with observations of wind speed/direction and SF6 concentrations from a controlled release from intensive observation period 3. The multiscale simulation, which is configured independent of local observations, shows similar model skill predicting wind speed/direction and improved skill predicting SF6 concentrations when compared with the idealized simulations, which require use of observations to set mean flow conditions. Use of this improved multiscale framework shows promise for enabling large-eddy simulation over highly complex terrain with dynamically downscaled boundary conditions from mesoscale models.


Sign in / Sign up

Export Citation Format

Share Document