scholarly journals Emerging Pharmacological Properties of Cholinergic Synaptic Transmission: Comparison between Mammalian and Insect Synaptic and Extrasynaptic Nicotinic Receptors

2011 ◽  
Vol 999 (999) ◽  
pp. 1-9
Author(s):  
Steeve H. Thany ◽  
Helene Tricoire-Leignel
2016 ◽  
Vol 36 (30) ◽  
pp. 7886-7896 ◽  
Author(s):  
Yan-Gang Sun ◽  
Vanessa Rupprecht ◽  
Li Zhou ◽  
Rajan Dasgupta ◽  
Frederik Seibt ◽  
...  

2020 ◽  
Vol 123 (2) ◽  
pp. 608-629 ◽  
Author(s):  
L. A. Poppi ◽  
J. C. Holt ◽  
R. Lim ◽  
A. M. Brichta

It has been over 60 years since peripheral efferent vestibular terminals were first identified in mammals, and yet the function of the efferent vestibular system remains obscure. One reason for the lack of progress may be due to our deficient understanding of the peripheral efferent synapse. Although vestibular efferent terminals were identified as cholinergic less than a decade after their anatomical characterization, the cellular mechanisms that underlie the properties of these synapses have had to be inferred. In this review we examine how recent mammalian studies have begun to reveal both nicotinic and muscarinic effects at these terminals and therefore provide a context for fast and slow responses observed in classic electrophysiological studies of the mammalian efferent vestibular system, nearly 40 years ago. Although incomplete, these new results together with those of recent behavioral studies are helping to unravel the mysterious and perplexing action of the efferent vestibular system. Armed with this information, we may finally appreciate the behavioral framework in which the efferent vestibular system operates.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Joshua Obermayer ◽  
Antonio Luchicchi ◽  
Tim S. Heistek ◽  
Sybren F. de Kloet ◽  
Huub Terra ◽  
...  

2005 ◽  
Vol 102 (5) ◽  
pp. 920-928 ◽  
Author(s):  
Hiroaki Naruo ◽  
Shin Onizuka ◽  
David Prince ◽  
Mayumi Takasaki ◽  
Naweed I. Syed

Background As compared with their effects on both inhibitory and excitatory synapses, little is known about the mechanisms by which general anesthetics affect synaptic plasticity that forms the basis for learning and memory at the cellular level. To test whether clinically relevant concentrations of sevoflurane affect short-term potentiation involving cholinergic synaptic transmission, the soma-soma synapses between identified, postsynaptic neurons were used. Methods Uniquely identifiable neurons visceral dorsal 4 (presynaptic) and left pedal dorsal 1 (postsynaptic) of the mollusk Lymnaea stagnalis were isolated from the intact ganglion and paired overnight in a soma-soma configuration. Simultaneous intracellular recordings coupled with fluorescent imaging of the FM1-43 dye were made in either the absence or the presence of sevoflurane. Results Cholinergic synapses, similar to those observed in vivo, developed between the neurons, and the synaptic transmission exhibited classic short-term, posttetanic potentiation. Action potential-induced (visceral dorsal 4), 1:1 excitatory postsynaptic potentials were reversibly and significantly suppressed by sevoflurane in a concentration-dependent manner. Fluorescent imaging with the dye FM1-43 revealed that sevoflurane did not affect presynaptic exocytosis or endocytosis; instead, postsynaptic nicotinic acetylcholine receptors were blocked in a concentration-dependent manner. To test the hypothesis that sevoflurane affects short-term potentiation, a posttetanic potentiation paradigm was used, and synaptic transmission was examined in either the presence or the absence of sevoflurane. Although 1.5% sevoflurane significantly reduced synaptic transmission between the paired cells, it did not affect the formation or retention of posttetanic potentiation at this synapse. Conclusions This study demonstrates that sevoflurane blocks cholinergic synaptic transmission postsynaptically but does not affect short-term synaptic plasticity at the visceral dorsal 4-left pedal dorsal 1 synapse.


2002 ◽  
Vol 445 (3) ◽  
pp. 153-161 ◽  
Author(s):  
Caterina Virginio ◽  
Angelo Giacometti ◽  
Laura Aldegheri ◽  
Joseph M Rimland ◽  
Georg C Terstappen

2014 ◽  
Vol 112 (4) ◽  
pp. 933-941 ◽  
Author(s):  
Jian-Rong Zhou ◽  
Tetsuya Shirasaki ◽  
Fumio Soeda ◽  
Kazuo Takahama

We have found that bradykinin (BK) potentiates the nicotine-induced currents in airway paratracheal/parabronchial ganglia (PTG) neurons. In this study, we investigated if BK affects the cholinergic synaptic transmission in rat PTG neurons attached with synaptic buttons. Excitatory postsynaptic currents (EPSCs) were recorded in acutely dissociated PTG neurons attached with presynaptic boutons. EPSC frequency was increased in the high-K+ external solution without affecting their amplitude. Activation and deactivation kinetics also did not change in the high-K+ solution. Cd2+ inhibited the EPSC frequency at 10−7 M and also amplitude at higher concentrations without changing the kinetics. Mecamylamine inhibited both the amplitude and frequency of EPSCs and reduced the activation and deactivation kinetics. 10−8 M BK potentiated the EPSC amplitude to 1.37 ± 0.19 times of preapplication control. In addition, its frequency was increased to 2.04 ± 0.41 times. BK did not affect the activation and deactivation kinetics. The effects of BK were mimicked by [Hyp3]-BK, a B2 kinin receptor agonist, whereas HOE 140, a B2 kinin receptor antagonist, abolished the effects of BK. In conclusion, BK potentiates the cholinergic synaptic transmission via B2 kinin receptors in the PTG. Since predominant control of airway function is thought to be exerted by cholinergic nerves arising from the PTG, the present findings might underlie at least partly the inflammatory pathological conditions of the lower airway.


Sign in / Sign up

Export Citation Format

Share Document