Sevoflurane Blocks Cholinergic Synaptic Transmission Postsynaptically but Does Not Affect Short-term Potentiation

2005 ◽  
Vol 102 (5) ◽  
pp. 920-928 ◽  
Author(s):  
Hiroaki Naruo ◽  
Shin Onizuka ◽  
David Prince ◽  
Mayumi Takasaki ◽  
Naweed I. Syed

Background As compared with their effects on both inhibitory and excitatory synapses, little is known about the mechanisms by which general anesthetics affect synaptic plasticity that forms the basis for learning and memory at the cellular level. To test whether clinically relevant concentrations of sevoflurane affect short-term potentiation involving cholinergic synaptic transmission, the soma-soma synapses between identified, postsynaptic neurons were used. Methods Uniquely identifiable neurons visceral dorsal 4 (presynaptic) and left pedal dorsal 1 (postsynaptic) of the mollusk Lymnaea stagnalis were isolated from the intact ganglion and paired overnight in a soma-soma configuration. Simultaneous intracellular recordings coupled with fluorescent imaging of the FM1-43 dye were made in either the absence or the presence of sevoflurane. Results Cholinergic synapses, similar to those observed in vivo, developed between the neurons, and the synaptic transmission exhibited classic short-term, posttetanic potentiation. Action potential-induced (visceral dorsal 4), 1:1 excitatory postsynaptic potentials were reversibly and significantly suppressed by sevoflurane in a concentration-dependent manner. Fluorescent imaging with the dye FM1-43 revealed that sevoflurane did not affect presynaptic exocytosis or endocytosis; instead, postsynaptic nicotinic acetylcholine receptors were blocked in a concentration-dependent manner. To test the hypothesis that sevoflurane affects short-term potentiation, a posttetanic potentiation paradigm was used, and synaptic transmission was examined in either the presence or the absence of sevoflurane. Although 1.5% sevoflurane significantly reduced synaptic transmission between the paired cells, it did not affect the formation or retention of posttetanic potentiation at this synapse. Conclusions This study demonstrates that sevoflurane blocks cholinergic synaptic transmission postsynaptically but does not affect short-term synaptic plasticity at the visceral dorsal 4-left pedal dorsal 1 synapse.

2001 ◽  
Vol 85 (6) ◽  
pp. 2509-2515 ◽  
Author(s):  
John Kilbride ◽  
Anthony M. Rush ◽  
Michael J. Rowan ◽  
Roger Anwyl

Inhibition of short-term plasticity by activation of presynaptic group II metabotropic glutamate receptors (group II mGluR) was investigated in the medial perforant path of the dentate gyrus in the hippocampus in vitro. Brief trains of stimulation (10 stimuli at 1–200 Hz) evoked short-term depression of field excitatory postsynaptic potentials (EPSPs). The steady-state level of depression, measured after 10 stimuli, was frequency dependent, increasing between 1 and 200 Hz. Activation of group II mGluR by the selective agonist LY354740 did not alter short-term depression evoked by frequencies up to 10 Hz, but did inhibit short-term depression evoked at higher frequencies in a frequency- and concentration-dependent manner. The time-averaged postsynaptic response (EPSP per unit time) was found to increase linearly with frequency up to ∼20 Hz. At higher frequencies, the response plateaued, thereby becoming independent of frequency. Frequencies above this were differentiated only during the transient postsynaptic response that accompanies changes in firing rates. Activation of presynaptically located group II mGluR increased the frequency at which the EPSP per unit time plateaued up to 30–50 Hz.


2002 ◽  
Vol 2 ◽  
pp. 730-737 ◽  
Author(s):  
Trevor J. Bushell ◽  
Gilles Sansig ◽  
Valerie J. Collett ◽  
Herman van der Putten ◽  
Graham L. Collingridge

Eight subtypes of metabotropic glutamate (mGlu) receptors have been identified of which two, mGlu5 and mGlu7, are highly expressed at synapses made between CA3 and CA1 pyramidal neurons in the hippocampus. This input, the Schaffer collateral-commissural pathway, displays robust long-term potentiation (LTP), a process believed to utilise molecular mechanisms that are key processes involved in the synaptic basis of learning and memory. To investigate the possible function in LTP of mGlu7 receptors, a subtype for which no specific antagonists exist, we generated a mouse lacking this receptor, by homologous recombination. We found that LTP could be induced in mGlu7-/- mice and that once the potentiation had reached a stable level there was no difference in the magnitude of LTP between mGlu7-/- mice and their littermate controls. However, the initial decremental phase of LTP, known as short-term potentiation (STP), was greatly attenuated in the mGlu7-/- mouse. In addition, there was less frequency facilitation during, and less post-tetanic potentiation following, a high frequency train in the mGlu7-/- mouse. These results show that the absence of mGlu7 receptors results in alterations in short-term synaptic plasticity in the hippocampus.


2020 ◽  
Vol 7 ◽  
Author(s):  
Jennifer Chow ◽  
Andrew J. Thompson ◽  
Fahad Iqbal ◽  
Wali Zaidi ◽  
Naweed I. Syed

The incidence of depression among humans is growing worldwide, and so is the use of selective serotonin reuptake inhibitors (SSRIs), such as sertraline hydrochloride. Our fundamental understanding regarding the mechanisms by which these antidepressants function and their off-target synaptic effects remain poorly defined, owing to the complexity of the mammalian brain. As all brain functions rely on proper synaptic connections between neurons, we examined the effect of sertraline on synaptic transmission, short-term potentiation underlying synaptic plasticity and synapse formation using identified neurons from the mollusk Lymnaea stagnalis. Through direct electrophysiological recordings, made from soma-soma paired neurons, we demonstrate that whereas sertraline does not affect short-term potentiation, it reduces the efficacy of synaptic transmission at both established and newly formed cholinergic synapses between identified neurons. Furthermore, Lymnaea neurons cultured in the presence of sertraline exhibited a decreased incidence of synaptogenesis. Our study provides the first direct functional evidence that sertraline exerts non-specific effects—outside of its SSRI role—when examined at the resolution of single pre- and post-synaptic neurons.


2015 ◽  
Vol 114 (2) ◽  
pp. 1109-1118 ◽  
Author(s):  
Masahito Wakita ◽  
Naoki Kotani ◽  
Kiyomitsu Shoudai ◽  
Toshitaka Yamaga ◽  
Norio Akaike

The effects of heavy water (deuterium oxide, D2O) on GABAergic and glutamatergic spontaneous and evoked synaptic transmission were investigated in acute brain slice and isolated “synaptic bouton” preparations of rat hippocampal CA3 neurons. The substitution of D2O for H2O reduced the frequency and amplitude of GABAergic spontaneous inhibitory postsynaptic currents (sIPSCs) in a concentration-dependent manner but had no effect on glutamatergic spontaneous excitatory postsynaptic currents (sEPSCs). In contrast, for evoked synaptic responses in isolated neurons, the amplitude of both inhibitory and excitatory postsynaptic currents (eIPSCs and eEPSCs) was decreased in a concentration-dependent manner. This was associated with increases of synaptic failure rate ( Rf) and paired-pulse ratio (PPR). The effect was larger for eIPSCs compared with eEPSCs. These results clearly indicate that D2O acts differently on inhibitory and excitatory neurotransmitter release machinery. Furthermore, D2O significantly suppressed GABAA receptor-mediated whole cell current ( IGABA) but did not affect glutamate receptor-mediated whole cell current ( IGlu). The combined effects of D2O at both the pre- and postsynaptic sites may explain the greater inhibition of eIPSCs compared with eEPSCs. Finally, D2O did not enhance or otherwise affect the actions of the general anesthetics nitrous oxide and propofol on spontaneous or evoked GABAergic and glutamatergic neurotransmissions, or on IGABA and IGlu. Our results suggest that previously reported effects of D2O to mimic and/or modulate anesthesia potency result from mechanisms other than modulation of GABAergic and glutamatergic neurotransmission.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Emily Petrus ◽  
Hey-Kyoung Lee

Alzheimer’s disease (AD) is the most common form of age-related dementia, which is thought to result from overproduction and/or reduced clearance of amyloid-beta (Aβ) peptides. Studies over the past few decades suggest that Aβis produced in an activity-dependent manner and has physiological relevance to normal brain functions. Similarly, physiological functions forβ- andγ-secretases, the two key enzymes that produce Aβby sequentially processing the amyloid precursor protein (APP), have been discovered over recent years. In particular, activity-dependent production of Aβhas been suggested to play a role in homeostatic regulation of excitatory synaptic function. There is accumulating evidence that activity-dependent immediate early gene Arc is an activity “sensor,” which acts upstream of Aβproduction and triggers AMPA receptor endocytosis to homeostatically downregulate the strength of excitatory synaptic transmission. We previously reported that Arc is critical for sensory experience-dependent homeostatic reduction of excitatory synaptic transmission in the superficial layers of visual cortex. Here we demonstrate that mice lacking the major neuronalβ-secretase, BACE1, exhibit a similar phenotype: stronger basal excitatory synaptic transmission and failure to adapt to changes in visual experience. Our results indicate that BACE1 plays an essential role in sensory experience-dependent homeostatic synaptic plasticity in the neocortex.


1996 ◽  
Vol 76 (3) ◽  
pp. 1887-1895 ◽  
Author(s):  
K. S. Hsu

1. The effect of dopamine (DA) on the excitatory synaptic transmission was studied in the CA1 neurons of rat hippocampal slices using intracellular recording technique. 2. Depolarizing excitatory postsynaptic potentials (EPSPs) were evoked by stimulation of the Schaffer collateral-commissural pathway. Superfusion of DA (0.03-1 microM) reversibly decreased the EPSP in a concentration-dependent manner and with an estimated IC50 of 0.3 microM. The sensitivity of postsynaptic neurons to the glutamate-receptor agonists, alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid or N-methyl-D-aspartate was unchanged by DA (0.3 microM) pretreatment. In addition, DA (0.3 microM) increased the magnitude of paired-pulse facilitation, a phenomenon attributed to an increase in the amount of transmitter released in response to the second stimulus. 3. The reduction of DA (0.3 microM) on the EPSP was antagonized by sulpiride (1-10 nM), a selective D2-receptor antagonist. However, D1-receptor antagonist, SKF-83566 (1-10 microM), did not significantly affect the reduction of DA (0.3 microM) on the EPSP. 4. (+/-)-2-(N-Phenylethyl-N-propyl)amino-5-hydroxytetralin (1 microM), an agonist of D2 receptor, mimicked the inhibitory effect of DA on the EPSP. However, neither the D1-receptor agonist SKF-38393 (1 microM) nor the D3-receptor agonist (PD-128,907 (1 microM) affected the EPSP. 5. Incubation of hippocampal slices with pertussis toxin (PTX, 5 micrograms/ml) for 12 h prevented the reduction of EPSP induced by DA (0.3 microM). 6. Rp-adenosine-3',5'-cyclic monophosphothioate (25 microM), a potent inhibitor of protein kinase A (PKA), alone decreased the amplitude of EPSP below baseline values and prevented the subsequent reduction by DA (0.3 microM). 7. These results indicate that DA at a low concentration (< or = 0.3 microM) reduces the excitatory response of hippocampal CA1 neurons after synaptic stimulation via the activation of presynaptic D2 receptors. The presynaptic action of DA is mediated by a PTX-sensitive Gi-proteins-coupled to PKA pathway.


2004 ◽  
Vol 84 (1) ◽  
pp. 69-85 ◽  
Author(s):  
MATTHEW A. XU-FRIEDMAN ◽  
WADE G. REGEHR

Xu-Friedman, Matthew A., and Wade G. Regehr. Structural Contributions to Short-Term Synaptic Plasticity. Physiol Rev 84: 69–85, 2004; 10.1152/physrev.00016.2003.—Synaptic ultrastructure is critical to many basic hypotheses about synaptic transmission. Various aspects of synaptic ultrastructure have also been implicated in the mechanisms of short-term plasticity. These forms of plasticity can greatly affect synaptic strength during ongoing activity. We review the evidence for how synaptic ultrastructure may contribute to facilitation, depletion, saturation, and desensitization.


2016 ◽  
Vol 50 (4) ◽  
pp. 363-371 ◽  
Author(s):  
Minh-Huy Dang ◽  
Ji-Eun Jung ◽  
Dae-Woo Lee ◽  
Kwang-Yeob Song ◽  
Jae-Gyu Jeon

Fluoride is commonly used as an ingredient of topical oral hygiene measures. Despite the anti-acidogenic activities of fluoride against cariogenic biofilms, the recovery of the biofilms from fluoride damage is unclear. Herein, we investigated the recovery of acid production in Streptococcus mutans biofilms after short-term or during periodic 1-min fluoride treatments. For this study, 46-hour-old S. mutans biofilms were treated with fluoride (0-2,000 ppm F-) for 1-8 min and then incubated in saliva for 0-100 min. The 74-hour-old biofilms were also periodically treated with the fluoride concentration during biofilm formation (1 min/treatment). Changes in acidogenicity and viability were determined via pH drop and colony-forming unit assays, respectively. In this study, acid production after a 1-min fluoride treatment was recovered as saliva incubation time increased, which followed a linear pattern of concentration dependence (R = 0.99, R2 = 0.98). The recovery pattern was in a biphasic pattern, with an initial rapid rate followed by a second slow recovery. Furthermore, recovery from fluoride damage was retarded in a concentration-dependent manner as treatment time increased. In periodic 1-min fluoride treatments, acid production in the biofilms was not diminished during the non-fluoride treatment period; however, it was reduced in a concentration-dependent manner during the fluoride treatment period. The viability of the biofilm cells did not change, even at high fluoride concentrations. Collectively, our results suggest that brief fluoride treatment does not sustain anti-acidogenic activity against S. mutans in biofilms since the damage is recoverable with time.


2019 ◽  
Author(s):  
Silvia Pelucchi ◽  
Lina Vandermeulen ◽  
Lara Pizzamiglio ◽  
Bahar Aksan ◽  
Jing Yan ◽  
...  

AbstractCofilin is one of the major regulators of actin dynamics in spines where it is required for structural synaptic plasticity. However, our knowledge of the mechanisms controlling Cofilin activity in spines remains still fragmented. Here, we describe the cyclase-associated protein 2 (CAP2) as a novel master regulator of Cofilin localization in spines. The formation of CAP2 dimers through its Cys32 is important for CAP2 binding to Cofilin and for normal spine actin turnover. The Cys32-dependent CAP2 homodimerization and association to Cofilin are triggered by long-term potentiation (LTP) and are required for LTP-induced Cofilin translocation into spines, spine remodeling and the potentiation of synaptic transmission. This mechanism is specifically affected in the hippocampus, but not in the superior frontal gyrus, of both Alzheimer’s Disease (AD) patients and APP/PS1 mice, where CAP2 is down-regulated and CAP2 dimer synaptic levels are reduced. In AD hippocampi, Cofilin preferentially associates with CAP2 monomer and is aberrantly localized in spines. Taken together, these results provide novel insights into structural plasticity mechanisms that are defective in AD.


2021 ◽  
Author(s):  
Kang-Ying Qian ◽  
Wan-Xin Zeng ◽  
Yue Hao ◽  
Xian-Ting Zeng ◽  
Haowen Liu ◽  
...  

SUMMARYThe development of functional synapses in the nervous system is important for animal physiology and behaviors. The synaptic transmission efficacy can be modulated by the environment to accommodate external changes, which is crucial for animal reproduction and survival. However, the underlying plasticity of synaptic transmission remains poorly understood. Here we show that in C. elegans, the male pheromone increases the hermaphrodite cholinergic transmission at the neuromuscular junction (NMJ), which alters hermaphrodites’ locomotion velocity and mating efficiency in a developmental stage-dependent manner. Dissection of the sensory circuits reveals that the AWB chemosensory neurons sense those male pheromones and further transduce the information to NMJ using cGMP signaling. Exposure of hermaphrodites to male pheromones specifically increases the accumulation of presynaptic CaV2 calcium channels and clustering of postsynaptic receptors at cholinergic synapses of NMJ, which potentiates cholinergic synaptic transmission. Thus, our study demonstrates a circuit mechanism for synaptic modulation by sexual dimorphic pheromones.


Sign in / Sign up

Export Citation Format

Share Document