Electrochemical Determination of Rivastigmine Hydrogen Tartrate at β-Cyclodextrin/Multi-Walled Carbon Nanotubes Modified Electrode

2019 ◽  
Vol 15 (3) ◽  
pp. 211-216
Author(s):  
Bugçe Kılıçyaldır ◽  
Asiye Aslıhan Avan ◽  
Kubilay Güçlü ◽  
Mustafa Özyürek ◽  
Hayati Filik

Background: Electrochemical techniques can easily be adopted to solve many problems of pharmaceutical interest. The implementation of electroanalytical methods in the assay of pharmaceutical formulations has increased greatly. Nowadays, owing to the critical importance of electron transfer and surface properties, chemically modified electrodes have been employed in electrochemical sensors. The chemically modified electrode is one of the most popular electroanalytical sensors and used in several applications. Methods: In this work, a β-cyclodextrine/multi-walled carbon nanotubes (β-CD/MWCNTs) composite modified glassy carbon electrode (GCE) was produced and applied to the detection of Rivastigmine hydrogen tartrate (RVT) in pharmaceutical formulations. The voltammetric feature of RVT at this β- CD/MWCNTs modified electrode was evaluated using cyclic voltammetry and square wave voltammetry. Results: The β-cyclodextrin and multi-walled carbon nanotubes modified glassy carbon electrode displayed good electrocatalytic activity in the oxidation of rivastigmine hydrogen tartrate with relatively high sensitivity, stability and lifetime. The calibration graph of the analyte was linear over the range 10- 1500 µM with two linear segments and the detection limit was obtained as 2.0 µM (S/N=3). The results showed that the electrochemical sensor has good sensitivity and selectivity. Conclusion: The β-CD/MWCNTs modified electrode displayed a high electrochemical activity and good sensitivity toward the oxidation of RVT. Compared with the bare MWCNTs coated sensor, the response of analyte increased soundly and the response potential of target analyte shifted negatively. The results indicated that the β-CD/MWCNTs film coated electrode had good catalysis to the voltammetric oxidation of RVT. The prepared sensor was applied to determine RVT in pharmaceutical samples with satisfactory yields. The outcomes indicate that β-CD/MWCNTs coated electrode is a safe choice for the detection of RVT.

Polymers ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 115 ◽  
Author(s):  
Yan-Na Ning ◽  
Bao-Lin Xiao ◽  
Nan-Nan Niu ◽  
Ali Moosavi-Movahedi ◽  
Jun Hong

In the present study, a glucose oxidase (GluOx) direct electron transfer was realized on an aminated polyethylene glycol (mPEG), carboxylic acid functionalized multi-walled carbon nanotubes (fMWCNTs), and ionic liquid (IL) composite functional polymer modified glassy carbon electrode (GCE). The amino groups in PEG, carboxyl groups in multi-walled carbon nanotubes, and IL may have a better synergistic effect, thus more effectively adjust the hydrophobicity, stability, conductivity, and biocompatibility of the composite functional polymer film. The composite polymer membranes were characterized by cyclic voltammetry (CV), ultraviolet-visible (UV-Vis) spectrophotometer, fluorescence spectroscopy, electrochemical impedance spectroscopy (EIS), and transmission electron microscopy (TEM), respectively. In 50 mM, pH 7.0 phosphate buffer solution, the formal potential and heterogeneous electron transfer constant (ks) of GluOx on the composite functional polymer modified GCE were −0.27 V and 6.5 s−1, respectively. The modified electrode could recognize and detect glucose linearly in the range of 20 to 950 μM with a detection limit of 0.2 μM. The apparent Michaelis-Menten constant (Kmapp) of the modified electrode was 143 μM. The IL/mPEG-fMWCNTs functional polymer could preserve the conformational structure and catalytic activity of GluOx and lead to high sensitivity, stability, and selectivity of the biosensors for glucose recognition and detection.


Sign in / Sign up

Export Citation Format

Share Document