Supervised Learning in Spiking Neural Networks with Synaptic Delay Plasticity: An Overview

2021 ◽  
Vol 15 (8) ◽  
pp. 854-865
Author(s):  
Yawen Lan ◽  
Qiang Li

Throughout the central nervous system (CNS), the information communicated between neurons is mainly implemented by the action potentials (or spikes). Although the spike-timing based neuronal codes have significant computational advantages over rate encoding scheme, the exact spike timing-based learning mechanism in the brain remains an open question. To close this gap, many weight-based supervised learning algorithms have been proposed for spiking neural networks. However, it is insufficient to consider only synaptic weight plasticity, and biological evidence suggest that the synaptic delay plasticity also plays an important role in the learning progress in biological neural networks. Recently, many learning algorithms have been proposed to consider both the synaptic weight plasticity and synaptic delay plasticity. The goal of this paper is to give an overview of the existing synaptic delay-based learning algorithms in spiking neural networks. We described the typical learning algorithms and reported the experimental results. Finally, we discussed the properties and limitations of each algorithm and made a comparison among them.

2011 ◽  
Vol 219-220 ◽  
pp. 770-773
Author(s):  
Wei Ya Shi

In this paper, we propose algorithm based reinforcement learning for spiking neural networks. The algorithm simulates biological adaptability and uses the soft-reward from environment to modulate the synaptic weight, which combines spike-timing-dependent plasticity (STDP), winner-take-all mechanism. The algorithm is tested to classify a number of standard benchmark dataset. The obtained results show the effectiveness of the proposed algorithm.


2019 ◽  
Vol 9 (4) ◽  
pp. 283-291 ◽  
Author(s):  
Sou Nobukawa ◽  
Haruhiko Nishimura ◽  
Teruya Yamanishi

Abstract Many recent studies have applied to spike neural networks with spike-timing-dependent plasticity (STDP) to machine learning problems. The learning abilities of dopamine-modulated STDP (DA-STDP) for reward-related synaptic plasticity have also been gathering attention. Following these studies, we hypothesize that a network structure combining self-organized STDP and reward-related DA-STDP can solve the machine learning problem of pattern classification. Therefore, we studied the ability of a network in which recurrent spiking neural networks are combined with STDP for non-supervised learning, with an output layer joined by DA-STDP for supervised learning, to perform pattern classification. We confirmed that this network could perform pattern classification using the STDP effect for emphasizing features of the input spike pattern and DA-STDP supervised learning. Therefore, our proposed spiking neural network may prove to be a useful approach for machine learning problems.


2020 ◽  
Vol 409 ◽  
pp. 103-118
Author(s):  
Malu Zhang ◽  
Jibin Wu ◽  
Ammar Belatreche ◽  
Zihan Pan ◽  
Xiurui Xie ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document