Journal of Artificial Intelligence and Soft Computing Research
Latest Publications


TOTAL DOCUMENTS

161
(FIVE YEARS 40)

H-INDEX

19
(FIVE YEARS 6)

Published By De Gruyter Open Sp. Z O.O.

2083-2567

2021 ◽  
Vol 11 (2) ◽  
pp. 99-110
Author(s):  
Maciej Kopczyński ◽  
Tomasz Grześ

Abstract This paper presents FPGA and softcore CPU based solution for large datasets parallel core calculation using rough set methods. Architectures shown in this paper have been tested on two real datasets running presented solutions inside FPGA unit. Tested datasets had 1 000 to 10 000 000 objects. The same operations were performed in software implementation. Obtained results show the big acceleration in computation time using hardware supporting core generation in comparison to pure software implementation.


2021 ◽  
Vol 11 (2) ◽  
pp. 143-155
Author(s):  
Tacjana Niksa-Rynkiewicz ◽  
Natalia Szewczuk-Krypa ◽  
Anna Witkowska ◽  
Krzysztof Cpałka ◽  
Marcin Zalasiński ◽  
...  

Abstract Artificial Intelligence algorithms are being increasingly used in industrial applications. Their important function is to support operation of diagnostic systems. This paper presents a new approach to the monitoring of a regenerative heat exchanger in a steam power plant, which is based on a specific use of the Recurrent Neural Network (RNN). The proposed approach was tested using real data. This approach can be easily adapted to similar monitoring applications of other industrial dynamic objects.


2021 ◽  
Vol 11 (2) ◽  
pp. 111-142
Author(s):  
Nassima Bougueroua ◽  
Smaine Mazouzi ◽  
Mohamed Belaoued ◽  
Noureddine Seddari ◽  
Abdelouahid Derhab ◽  
...  

Abstract Multi-Agent Systems (MAS) have been widely used in many areas like modeling and simulation of complex phenomena, and distributed problem solving. Likewise, MAS have been used in cyber-security, to build more efficient Intrusion Detection Systems (IDS), namely Collaborative Intrusion Detection Systems (CIDS). This work presents a taxonomy for classifying the methods used to design intrusion detection systems, and how such methods were used alongside with MAS in order to build IDS that are deployed in distributed environments, resulting in the emergence of CIDS. The proposed taxonomy, consists of three parts: 1) general architecture of CIDS, 2) the used agent technology, and 3) decision techniques, in which used technologies are presented. The proposed taxonomy reviews and classifies the most relevant works in this topic and highlights open research issues in view of recent and emerging threats. Thus, this work provides a good insight regarding past, current, and future solutions for CIDS, and helps both researchers and professionals design more effective solutions.


2021 ◽  
Vol 11 (2) ◽  
pp. 157-175
Author(s):  
Ludmila Dymova ◽  
Krzysztof Kaczmarek ◽  
Pavel Sevastjanov ◽  
Łukasz Sułkowski ◽  
Krzysztof Przybyszewski

Abstract A generalization of technique for establishing order preference by similarity to the ideal solution (TOPSIS) in the intuitionistic fuzzy setting based on the redefinition of intuitionistic fuzzy sets theory (A IFS) in the framework of Dempster-Shafer theory (DST) of evidence is proposed. The use of DST mathematical tools makes it possible to avoid a set of limitations and drawbacks revealed recently in the conventional Atanassov’s operational laws defined on intuitionistic fuzzy values, which may produce unacceptable results in the solution of multiple criteria decision-making problems. This boosts considerably the quality of aggregating operators used in the intuitionistic fuzzy TOPSIS method. It is pointed out that the conventional TOPSIS method may be naturally treated as a weighted sum of some modified local criteria. Because this aggregating approach does not always reflects well intentions of decision makers, two additional aggregating methods that cannot be defined in the framework of conventional A IFS based on local criteria weights being intuitionistic fuzzy values, are introduced. Having in mind that different aggregating methods generally produce different alternative rankings to obtain the compromise ranking, the method for aggregating of aggregation modes has been applied. Some examples are used to illustrate the validity and features of the proposed approach.


Author(s):  
Adam Niewiadomski ◽  
Marcin Kacprowicz

Abstract The article presents our research on applications of fuzzy logic to reduce air pollution by DeNOx filters. The research aim is to manage data on Selective Catalytic Reduction (SCR) process responsible for reducing the emission of nitrogen oxide (NO) and nitrogen dioxide (NO2). Dedicated traditional Fuzzy Logic Systems (FLS) and Type-2 Fuzzy Logic Systems (T2FLS) are proposed with the use of new methods for learning fuzzy rules and with new types of fuzzy implications (the so-called ”engineering implications”). The obtained results are consistent with the results provided by experts. The main advantage of this paper is that type-2 fuzzy logic systems with ”engineering implications” and new methods of learning fuzzy rules give results closer to expert expectations than those based on traditional fuzzy logic systems. According to the literature review, no T2FLS were applied to manage DeNOx filter prior to the research presented here.


Author(s):  
Mirosław Pawlak ◽  
Gurmukh Singh Panesar ◽  
Marcin Korytkowski

AbstractIn this paper we propose a novel method for invariant image reconstruction with the properly selected degree of symmetry. We make use of Zernike radial moments to represent an image due to their invariance properties to isometry transformations and the ability to uniquely represent the salient features of the image. The regularized ridge regression estimation strategy under symmetry constraints for estimating Zernike moments is proposed. This extended regularization problem allows us to enforces the bilateral symmetry in the reconstructed object. This is achieved by the proper choice of two regularization parameters controlling the level of reconstruction accuracy and the acceptable degree of symmetry. As a byproduct of our studies we propose an algorithm for estimating an angle of the symmetry axis which in turn is used to determine the possible asymmetry present in the image. The proposed image recovery under the symmetry constraints model is tested in a number of experiments involving image reconstruction and symmetry estimation.


Author(s):  
Fawaz E. Alsaadi ◽  
Syed Ahtsham Ul Haq Bokhary ◽  
Aqsa Shah ◽  
Usman Ali ◽  
Jinde Cao ◽  
...  

AbstractThe main purpose of a topological index is to encode a chemical structure by a number. A topological index is a graph invariant, which decribes the topology of the graph and remains constant under a graph automorphism. Topological indices play a wide role in the study of QSAR (quantitative structure-activity relationship) and QSPR (quantitative structure-property relationship). Topological indices are implemented to judge the bioactivity of chemical compounds. In this article, we compute the ABC (atom-bond connectivity); ABC4 (fourth version of ABC), GA (geometric arithmetic) and GA5 (fifth version of GA) indices of some networks sheet. These networks include: octonano window sheet; equilateral triangular tetra sheet; rectangular sheet; and rectangular tetra sheet networks.


Author(s):  
Julia El Zini ◽  
Yara Rizk ◽  
Mariette Awad

AbstractRecurrent neural networks (RNN) have been successfully applied to various sequential decision-making tasks, natural language processing applications, and time-series predictions. Such networks are usually trained through back-propagation through time (BPTT) which is prohibitively expensive, especially when the length of the time dependencies and the number of hidden neurons increase. To reduce the training time, extreme learning machines (ELMs) have been recently applied to RNN training, reaching a 99% speedup on some applications. Due to its non-iterative nature, ELM training, when parallelized, has the potential to reach higher speedups than BPTT.In this work, we present Opt-PR-ELM, an optimized parallel RNN training algorithm based on ELM that takes advantage of the GPU shared memory and of parallel QR factorization algorithms to efficiently reach optimal solutions. The theoretical analysis of the proposed algorithm is presented on six RNN architectures, including LSTM and GRU, and its performance is empirically tested on ten time-series prediction applications. Opt-PR-ELM is shown to reach up to 461 times speedup over its sequential counterpart and to require up to 20x less time to train than parallel BPTT. Such high speedups over new generation CPUs are extremely crucial in real-time applications and IoT environments.


Author(s):  
Agnieszka Mikołajczyk ◽  
Michał Grochowski ◽  
Arkadiusz Kwasigroch

AbstractThe paper proposes summarized attribution-based post-hoc explanations for the detection and identification of bias in data. A global explanation is proposed, and a step-by-step framework on how to detect and test bias is introduced. Since removing unwanted bias is often a complicated and tremendous task, it is automatically inserted, instead. Then, the bias is evaluated with the proposed counterfactual approach. The obtained results are validated on a sample skin lesion dataset. Using the proposed method, a number of possible bias-causing artifacts are successfully identified and confirmed in dermoscopy images. In particular, it is confirmed that black frames have a strong influence on Convolutional Neural Network’s prediction: 22% of them changed the prediction from benign to malignant.


Author(s):  
Jessica Sharmin Rahman ◽  
Tom Gedeon ◽  
Sabrina Caldwell ◽  
Richard Jones ◽  
Zi Jin

AbstractMusic has the ability to evoke different emotions in people, which is reflected in their physiological signals. Advances in affective computing have introduced computational methods to analyse these signals and understand the relationship between music and emotion in greater detail. We analyse Electrodermal Activity (EDA), Blood Volume Pulse (BVP), Skin Temperature (ST) and Pupil Dilation (PD) collected from 24 participants while they listen to 12 pieces from 3 different genres of music. A set of 34 features were extracted from each signal and 6 different feature selection methods were applied to identify useful features. Empirical analysis shows that a neural network (NN) with a set of features extracted from the physiological signals can achieve 99.2% accuracy in differentiating among the 3 music genres. The model also reaches 98.5% accuracy in classification based on participants’ subjective rating of emotion. The paper also identifies some useful features to improve accuracy of the classification models. Furthermore, we introduce a new technique called ’Gingerbread Animation’ to visualise the physiological signals we record as a video, and to make these signals more comprehensible to the human eye, and also appropriate for computer vision techniques such as Convolutional Neural Networks (CNNs). Our results overall provide a strong motivation to investigate the relationship between physiological signals and music, which can lead to improvements in music therapy for mental health care and musicogenic epilepsy reduction (our long term goal).


Sign in / Sign up

Export Citation Format

Share Document