Sulfonated Polyimide-Clay Thin Films for Energy Application

2016 ◽  
Vol 10 (999) ◽  
pp. 1-1 ◽  
Author(s):  
Farman Ali ◽  
Shaukat Saeed ◽  
Syed Shah ◽  
Fazal Rahim ◽  
Laurent Duclaux ◽  
...  
2016 ◽  
Vol 10 (3) ◽  
pp. 221-230 ◽  
Author(s):  
Farman Ali ◽  
Shaukat Saeed ◽  
Syed Shah ◽  
Fazal Rahim ◽  
Laurent Duclaux ◽  
...  

2019 ◽  
Vol 30 (21) ◽  
pp. 19164-19172 ◽  
Author(s):  
Nisar Ali ◽  
Farman Ali ◽  
Shaukat Saeed ◽  
Syed Sakhawat Shah ◽  
Muhammad Bilal

Abstract Herein, the electrochemical and structural properties of sulfonated polyimide (SPI) clay-based composite films have been investigated. SPI reinforced with grafted sonicated clay (GSC) was fabricated via a solution casting method in the form of thin films. The as-synthesized thin films were light brown, tough, flexible and transparent. The thickness of the films were 0.109 mm and 0.056 for pristine SPI and GSC-SPI, respectively. The fabricated composite was fully investigated via Fourier transform infrared spectroscopy (FTIR), proton nuclear magnetic resonance spectroscopy (1H NMR), carbon (13C) NMR and impedance spectroscopy. The completion of the proton exchange reaction was confirmed by 1H NMR. The electrical properties of the SPI-clay based composite film were investigated by impedance spectroscopy. The conductivity was measured in a wide frequency range from room temperature to 363 K by applying an ac signal of 0.5 V. The appearance of two semicircular arcs at low and high frequency shows two conduction mechanisms with different relaxation times at the exterior and interior of the system. Bode plot also confirms the presence of two electro-active regions. The shift in the position of tanδ peaks to lower frequency region with increasing temperature shows that these relaxations are thermally deactivated. The ac conductivity of the system increased from 6.02E−10 for neat SPI to 6.61E−6 Ω−1 cm−1 for SPI-GSC composite. In conclusion, these layered silicates based conductive films have the potential to act as a polyelectrolyte membrane for fuel cell energy devices.


2015 ◽  
Vol 119 (38) ◽  
pp. 21767-21774 ◽  
Author(s):  
Karthik Krishnan ◽  
Hiroko Iwatsuki ◽  
Mitsuo Hara ◽  
Shusaku Nagano ◽  
Yuki Nagao

2018 ◽  
Author(s):  
Chaitali S. Bagade ◽  
Vishvanath B. Ghanwat ◽  
Santosh B. Kamble ◽  
Popatrao N. Bhosale

2014 ◽  
Vol 82 (10) ◽  
pp. 865-869 ◽  
Author(s):  
Karthik KRISHNAN ◽  
Tomoaki YAMADA ◽  
Hiroko IWATSUKI ◽  
Mitsuo HARA ◽  
Shusaku NAGANO ◽  
...  

2014 ◽  
Vol 2 (19) ◽  
pp. 6895-6903 ◽  
Author(s):  
Karthik Krishnan ◽  
Hiroko Iwatsuki ◽  
Mitsuo Hara ◽  
Shusaku Nagano ◽  
Yuki Nagao

Studies of proton transport in confined thin polymer electrolytes are essential for providing additional information regarding the structure–property relationships of such materials.


2018 ◽  
Vol 51 (9) ◽  
pp. 3351-3359 ◽  
Author(s):  
Yutaro Ono ◽  
Ryosuke Goto ◽  
Mitsuo Hara ◽  
Shusaku Nagano ◽  
Takashi Abe ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document