scholarly journals Experience Using the Heidelberg Retina Angiograph 2 with a Wide-Field Contact Lens System in Diabetic Retinopathy Cases

2013 ◽  
Vol 7 (1) ◽  
pp. 54-57 ◽  
Author(s):  
Miyo Shiibashi ◽  
Miwako Yoshimoto ◽  
Takashi Shigeeda ◽  
Shigehiko Kitano ◽  
Satoshi Kato

Introduction: HRA (Heiderberg Retina Angiograph) 2 uses a confocal scanning laser system which can provide high quality digital images but its imaging field is only 30°at most. HRA2 with a wide-field contact lens system allows an imaging field of up to 150°. Methods: We examined the advantages and disadvantages of HRA2, with a wide-field contact lens, for the evaluating diabetic retinopathy (DR). Results: HRA2 was beneficial for obtaining images of the entire retina simultaneously, without missing peripheral retinal non-perfusion and neovascularization. On the other hand, clear images connot be acquired in cases with media opacities such as corneal dystrophy, cataract and asteroid hyalosis, or in those with yellow tinted IOL. Conclusions: HRA2 with a wide-field contact lens is useful for visualizing peripheral retinal lesions in DR cases.

Retina ◽  
2015 ◽  
Vol 35 (12) ◽  
pp. 2664-2668 ◽  
Author(s):  
Mark P. Espina ◽  
Cheryl A. Arcinue ◽  
Feiyan Ma ◽  
Natalia Camacho ◽  
Dirk-Uwe G. Bartsch ◽  
...  

2016 ◽  
Vol 236 (1) ◽  
pp. 8-18 ◽  
Author(s):  
Anna C.S. Tan ◽  
Monika Fleckenstein ◽  
Steffen Schmitz-Valckenberg ◽  
Frank G. Holz

Purpose: To assess the clinical application of multicolor imaging by confocal scanning laser ophthalmoscopy (cSLO). Methods: Retinal imaging was performed in 76 patients including cSLO multicolor imaging (SPECTRALIS SD-OCT, Heidelberg Engineering, Heidelberg, Germany) and color fundus photography (CFP). Results: The use of confocal optics, reduced light scatter and automated eye tracking enable high-resolution cSLO reflectance images. Compared to CFP, the appearance of pigment alterations and hemorrhages were some of the differences observed. Various artifacts including those derived from optical media alterations need to be considered when interpreting images. Specific pathological findings including epiretinal membranes, fibrovascular proliferations, and reticular pseudodrusen may be better visualized on multicolor images. Conclusions: When using multicolor imaging, ophthalmologists need to be mindful about differences in the appearance of pathological changes and artifacts. Multicolor imaging may offer information over and above conventional CFP; it can be performed through undilated pupils and is less affected by media opacities.


2020 ◽  
pp. bjophthalmol-2019-315394
Author(s):  
Abraham Olvera-Barrios ◽  
Tjebo FC Heeren ◽  
Konstantinos Balaskas ◽  
Ryan Chambers ◽  
Louis Bolter ◽  
...  

BackgroundPhotographic diabetic retinopathy screening requires labour-intensive grading of retinal images by humans. Automated retinal image analysis software (ARIAS) could provide an alternative to human grading. We compare the performance of an ARIAS using true-colour, wide-field confocal scanning images and standard fundus images in the English National Diabetic Eye Screening Programme (NDESP) against human grading.MethodsCross-sectional study with consecutive recruitment of patients attending annual diabetic eye screening. Imaging with mydriasis was performed (two-field protocol) with the EIDON platform (CenterVue, Padua, Italy) and standard NDESP cameras. Human grading was carried out according to NDESP protocol. Images were processed by EyeArt V.2.1.0 (Eyenuk Inc, Woodland Hills, California). The reference standard for analysis was the human grade of standard NDESP images.ResultsWe included 1257 patients. Sensitivity estimates for retinopathy grades were: EIDON images; 92.27% (95% CI: 88.43% to 94.69%) for any retinopathy, 99% (95% CI: 95.35% to 100%) for vision-threatening retinopathy and 100% (95% CI: 61% to 100%) for proliferative retinopathy. For NDESP images: 92.26% (95% CI: 88.37% to 94.69%) for any retinopathy, 100% (95% CI: 99.53% to 100%) for vision-threatening retinopathy and 100% (95% CI: 61% to 100%) for proliferative retinopathy. One case of vision-threatening retinopathy (R1M1) was missed by the EyeArt when analysing the EIDON images, but identified by the human graders. The EyeArt identified all cases of vision-threatening retinopathy in the standard images.ConclusionEyeArt identified diabetic retinopathy in EIDON images with similar sensitivity to standard images in a large-scale screening programme, exceeding the sensitivity threshold recommended for a screening test. Further work to optimise the identification of ‘no retinopathy’ and to understand the differential lesion detection in the two imaging systems would enhance the use of these two innovative technologies in a diabetic retinopathy screening setting.


Author(s):  
John C. Russ

Three-dimensional (3D) images consisting of arrays of voxels can now be routinely obtained from several different types of microscopes. These include both the transmission and emission modes of the confocal scanning laser microscope (but not its most common reflection mode), the secondary ion mass spectrometer, and computed tomography using electrons, X-rays or other signals. Compared to the traditional use of serial sectioning (which includes sequential polishing of hard materials), these newer techniques eliminate difficulties of alignment of slices, and maintain uniform resolution in the depth direction. However, the resolution in the z-direction may be different from that within each image plane, which makes the voxels non-cubic and creates some difficulties for subsequent analysis.


Author(s):  
M Wessendorf ◽  
A Beuning ◽  
D Cameron ◽  
J Williams ◽  
C Knox

Multi-color confocal scanning-laser microscopy (CSLM) allows examination of the relationships between neuronal somata and the nerve fibers surrounding them at sub-micron resolution in x,y, and z. Given these properties, it should be possible to use multi-color CSLM to identify relationships that might be synapses and eliminate those that are clearly too distant to be synapses. In previous studies of this type, pairs of images (e.g., red and green images for tissue stained with rhodamine and fluorescein) have been merged and examined for nerve terminals that appose a stained cell (see, for instance, Mason et al.). The above method suffers from two disadvantages, though. First, although it is possible to recognize appositions in which the varicosity abuts the cell in the x or y axes, it is more difficult to recognize them if the apposition is oriented at all in the z-axis—e.g., if the varicosity lies above or below the neuron rather than next to it. Second, using this method to identify potential appositions over an entire cell is time-consuming and tedious.


Author(s):  
JS Deitch ◽  
KL Smith ◽  
JW Swann ◽  
JN Turner

Neurons labeled with horseradish peroxidase and reacted with diaminobenzidine (DAB) can be imaged using a confocal scanning laser microscope (CSLM) in the reflection mode. In contrast to fluorescent markers, the DAB reaction product is thought to be stable and can be observed by both light and electron microscopy. We have investigated the sensitivity of the DAB reaction product to laser irradiation, and present the spectrophotometric properties of DAB before and after exposure in the CSLM.Pyramidal neurons in slices of rat hippocampus were injected with biocytin (a biotin-lysine complex), fixed overnight in 4% paraformaldehyde, and vibratome sectioned at 75 μm. Biocytin was detected with avidin-HRP (1:200) in 0.5% Triton X-100, incubated in DAB (0.5 mg/ml) with or without 0.04% nickel ammonium sulfate (Ni), dehydrated, and imaged in a Bio Rad MRC-500 CSLM with an argon ion laser (488 and 514 nm). Spectrophotometric measurements of the soma were made on a Zeiss microspectrophotometer, as a function of laser exposure (100-1000 scans) and staining protocol.


Sign in / Sign up

Export Citation Format

Share Document