Relationship Between Susceptibility to DMCM-Induced Generalized Motor Convulsions and Low-Affinity [3H]-Ouabain Binding in Membranes in Rat Brain

2016 ◽  
Vol 9 (4) ◽  
pp. 332-336
Author(s):  
Marcos Brandao Contó ◽  
Marco Antonio Campana Venditti
Keyword(s):  
1992 ◽  
Vol 40 (6) ◽  
pp. 771-779 ◽  
Author(s):  
A A Maki ◽  
D G Baskin ◽  
W L Stahl

The anatomic distribution of high- and low-affinity cardiac glycoside binding sites in the nervous system is largely unknown. In the present study the regional distribution and properties of these sites were determined in rat brain by quantitative autoradiography (QAR). Two populations of cardiac glycoside binding sites were demonstrated with [3H]-ouabain, a specific inhibitor of Na,K-ATPases: (a) high-affinity binding sites with Kd values of 22-69 nM, which were blocked by erythrosin B, and (b) low-affinity binding sites with Kd values of 727-1482 nM. Sites with very low affinity for ouabain were not found by QAR. High- and low-affinity [3H]-ouabain binding sites were both found in all brain regions studied, including somatosensory cortex, thalamic and hypothalamic areas, medial forebrain bundle, amygdaloid nucleus, and caudate-putamen, although the distributions of high- and low-affinity sites were not congruent. Low-affinity [3H]-ouabain binding sites (Bmax = 222-358 fmol/mm2) were approximately twofold greater in number than high-affinity binding sites (Bmax = 76-138 fmol/mm2) in these regions of brain. Binding of [3H]-ouabain to both high- and low-affinity sites was blocked by Na+; however, low-affinity binding sites were less sensitive to inhibition by K+ (IC50 = 6.4 mM) than the high-affinity [3H]-ouabain binding sites (IC50 = 1.4 mM). The QAR method, utilizing [3H]-ouabain under standard conditions, is a valid method for studying modulation of Na,K-ATPase molecules in well-defined anatomic regions of the nervous system.


1986 ◽  
Vol 64 (10) ◽  
pp. 1049-1053 ◽  
Author(s):  
Steven P. Lintlop ◽  
Bill Durante ◽  
Fred A. Sunahara ◽  
Amar K. Sen

The cytosolic fraction of rat cerebellum possesses a factor(s) which is capable of inhibiting synaptosomal Na,K-ATPase activity, competing with [3H]ouabain binding to rat brain synaptosomes, and inducing positive inotropy in guinea pig atrial strips. These results demonstrate the existence of a ouabain-like principle in rat cerebella. The inhibitory activity of the factor was found to be partially thermolabile and diminished by a proteolytic agent, and the activity could be augmented by increasing concentrations of Mg2+, suggesting a regulatory mechanism for the endogenous digitalis-like principle.


1987 ◽  
Vol 409 (2) ◽  
pp. 335-342 ◽  
Author(s):  
Mary Lou Caspers ◽  
Rochelle D. Schwartz ◽  
Rodrigo Labarca ◽  
Steven M. Paul
Keyword(s):  

1991 ◽  
Vol 10 (2) ◽  
pp. 139-150 ◽  
Author(s):  
Michael L. Brines ◽  
Barbara I. Gulanski ◽  
Maureen Gilmore-Hebert ◽  
Adam L. Greene ◽  
Edward J. Benz ◽  
...  

1984 ◽  
Vol 322 (1) ◽  
pp. 189-193 ◽  
Author(s):  
Alexander C. Spyropoulos ◽  
Thomas C. Rainbow

1990 ◽  
Vol 51 (1) ◽  
pp. 109-116 ◽  
Author(s):  
Chellu S. Chetty ◽  
Bettaiya Rajanna ◽  
Sharada Rajanna

Sign in / Sign up

Export Citation Format

Share Document