scholarly journals Enzyme Fuel Cell for Cellulolytic Sugar Conversion Employing FAD Glucose Dehydrogenase and Carbon Cloth Electrode Based on Direct Electron Transfer Principle~!2010-01-09~!2010-02-04~!2010-05-17~!

2010 ◽  
Vol 2 (1) ◽  
pp. 6-10 ◽  
Author(s):  
Desriani ◽  
Takuya Hanashi ◽  
Tomohiko Yamazaki ◽  
Wakako Tsugawa ◽  
Koji Sode
2007 ◽  
Vol 22 (9-10) ◽  
pp. 2250-2255 ◽  
Author(s):  
Noriko Kakehi ◽  
Tomohiko Yamazaki ◽  
Wakako Tsugawa ◽  
Koji Sode

2019 ◽  
Vol 123 ◽  
pp. 114-123 ◽  
Author(s):  
Kohei Ito ◽  
Junko Okuda-Shimazaki ◽  
Kazushige Mori ◽  
Katsuhiro Kojima ◽  
Wakako Tsugawa ◽  
...  

2022 ◽  
pp. 193229682110706
Author(s):  
Yutaro Inoue ◽  
Yasuhide Kusaka ◽  
Kotaro Shinozaki ◽  
Inyoung Lee ◽  
Koji Sode

Background: The bacterial derived flavin adenine dinucleotide (FAD)-dependent glucose dehydrogenase (FADGDH) is the most promising enzyme for the third-generation principle-based enzyme sensor for continuous glucose monitoring (CGM). Due to the ability of the enzyme to transfer electrons directly to the electrode, recognized as direct electron transfer (DET)-type FADGDH, although no investigation has been reported about DET-type FADGDH employed on a miniaturized integrated electrode. Methods: The miniaturized integrated electrode was formed by sputtering gold (Au) onto a flexible film with 0.1 mm in thickness and divided into 3 parts. After an insulation layer was laminated, 3 openings for a working electrode, a counter electrode and a reference electrode were formed by dry etching. A reagent mix containing 1.2 × 10−4 Unit of DET-type FADGDH and carbon particles was deposited. The long-term stability of sensor was evaluated by continuous operation, and its performance was also evaluated in the presence of acetaminophen and the change in oxygen partial pressure (pO2) level. Results: The amperometric response of the sensor showed a linear response to glucose concentration up to 500 mg/dL without significant change of the response over an 11-day continuous measurement. Moreover, the effect of acetaminophen and pO2 on the response were negligible. Conclusions: These results indicate the superb potential of the DET-type FADGDH-based sensor with the combination of a miniaturized integrated electrode. Thus, the described miniaturized DET-type glucose sensor for CGM will be a promising tool for effective glycemic control. This will be further investigated using an in vivo study.


RSC Advances ◽  
2016 ◽  
Vol 6 (73) ◽  
pp. 68827-68834 ◽  
Author(s):  
Praveena Gangadharan ◽  
Indumathi M. Nambi ◽  
Jaganathan Senthilnathan ◽  
Pavithra V. M.

In the present study, a low molecular heterocyclic aminopyrazine (Apy)–reduced graphene oxide (r-GO) hybrid coated carbon cloth (r-GO–Apy–CC) was employed as an active and stable bio-electro catalyst in a microbial fuel cell (MFC).


2019 ◽  
Vol 129 ◽  
pp. 189-197 ◽  
Author(s):  
Yuka Ito ◽  
Junko Okuda-Shimazaki ◽  
Wakako Tsugawa ◽  
Noya Loew ◽  
Isao Shitanda ◽  
...  

2019 ◽  
Vol 75 (9) ◽  
pp. 841-851 ◽  
Author(s):  
Hiromi Yoshida ◽  
Katsuhiro Kojima ◽  
Masaki Shiota ◽  
Keiichi Yoshimatsu ◽  
Tomohiko Yamazaki ◽  
...  

The bacterial flavin adenine dinucleotide (FAD)-dependent glucose dehydrogenase complex derived from Burkholderia cepacia (BcGDH) is a representative molecule of direct electron transfer-type FAD-dependent dehydrogenase complexes. In this study, the X-ray structure of BcGDHγα, the catalytic subunit (α-subunit) of BcGDH complexed with a hitchhiker protein (γ-subunit), was determined. The most prominent feature of this enzyme is the presence of the 3Fe–4S cluster, which is located at the surface of the catalytic subunit and functions in intramolecular and intermolecular electron transfer from FAD to the electron-transfer subunit. The structure of the complex revealed that these two molecules are connected through disulfide bonds and hydrophobic interactions, and that the formation of disulfide bonds is required to stabilize the catalytic subunit. The structure of the complex revealed the putative position of the electron-transfer subunit. A comparison of the structures of BcGDHγα and membrane-bound fumarate reductases suggested that the whole BcGDH complex, which also includes the membrane-bound β-subunit containing three heme c moieties, may form a similar overall structure to fumarate reductases, thus accomplishing effective electron transfer.


2021 ◽  
Vol 8 ◽  
Author(s):  
Sooyoun Yu ◽  
Nosang V. Myung

Direct electron transfer (DET), which requires no mediator to shuttle electrons from enzyme active site to the electrode surface, minimizes complexity caused by the mediator and can further enable miniaturization for biocompatible and implantable devices. However, because the redox cofactors are typically deeply embedded in the protein matrix of the enzymes, electrons generated from oxidation reaction cannot easily transfer to the electrode surface. In this review, methods to improve the DET rate for enhancement of enzymatic fuel cell performances are summarized, with a focus on the more recent works (past 10 years). Finally, progress on the application of DET-enabled EFC to some biomedical and implantable devices are reported.


Sign in / Sign up

Export Citation Format

Share Document