scholarly journals Structures of Membrane Electrode Assembly Catalyst Layers for Proton Exchange Membrane Fuel Cells

2012 ◽  
Vol 5 (1) ◽  
pp. 28-38 ◽  
Author(s):  
Tzyy-Lung Leon Yu ◽  
Hsiu-Li Lin ◽  
Po-Hao Su ◽  
Guan-Wen Wang

In this paper, we modify the conventional 5-layer membrane electrode assembly (MEA, in which a proton exchange membrane (PEM) is located at its center, two Pt-C-40 (Pt on carbon powder support, Pt content 40 wt.%) catalyst layers (CLs) are located on the surfaces of the both sides of the PEM and two gas diffusion layers (GDLs) are attached next on the outer surfaces of two Pt-C-40 layers) and propose 7-layer and 9-layer MEAs by coating thin Pt-black CLs at the interfaces between the Pt-C-40 layer and the GDL and between the PEM and the Pt-C-40 layer and reducing the Pt-C-40 loading. The reduced Pt loading quantity of the Pt-C-40 layer is equal to the increased Pt loading quantity of the Pt-black layer, thus the total amount of Pt loadings in the unmodified conventional MEA and the modified MEAs are at a fixed Pt loading quantity. These modified MEAs may complicate the manufacture process. The main advantage of these 7- and 9-layer MEAs is the thinner CL thickness and thus lower CL proton transport resistance. Because of the thin Pt-black layer thickness in MEA, we avoid agglomeration of the Pt-black particles and maintain high Pt catalytic activity. We show these new CL structure MEAs have better fuel cells performance than the conventional 5-layer MEA.

Energies ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2975
Author(s):  
Zikhona Nondudule ◽  
Jessica Chamier ◽  
Mahabubur Chowdhury

To decrease the cost of fuel cell manufacturing, the amount of platinum (Pt) in the catalyst layer needs to be reduced. In this study, ionomer gradient membrane electrode assemblies (MEAs) were designed to reduce Pt loading without sacrificing performance and lifetime. A two-layer stratification of the cathode was achieved with varying ratios of 28 wt. % ionomer in the inner layer, on the membrane, and 24 wt. % on the outer layer, coated onto the inner layer. To study the MEA performance, the electrochemical surface area (ECSA), polarization curves, and electrochemical impedance spectroscopy (EIS) responses were evaluated under 20, 60, and 100% relative humidity (RH). The stratified MEA Pt loading was reduced by 12% while maintaining commercial equivalent performance. The optimal two-layer design was achieved when the Pt loading ratio between the layers was 1:6 (inner:outer layer). This MEA showed the highest ECSA and performance at 0.65 V with reduced mass transport losses. The integrity of stratified MEAs with lower Pt loading was evaluated with potential cycling and proved more durable than the monolayer MEA equivalent. The higher ionomer loading adjacent to the membrane and the bi-layer interface of the stratified catalyst layer (CL) increased moisture in the cathode CL, decreasing the degradation rate. Using ionomer stratification to decrease the Pt loading in an MEA yielded a better performance compared to the monolayer MEA design. This study, therefore, contributes to the development of more durable, cost-effective MEAs for low-temperature proton exchange membrane fuel cells.


Nanoscale ◽  
2017 ◽  
Vol 9 (20) ◽  
pp. 6910-6919 ◽  
Author(s):  
Yachao Zeng ◽  
Xiaoqian Guo ◽  
Zhiqiang Wang ◽  
Jiangtao Geng ◽  
Hongjie Zhang ◽  
...  

2007 ◽  
Vol 10 (3) ◽  
pp. B47 ◽  
Author(s):  
Arunachala M. Kannan ◽  
Vinod P. Veedu ◽  
Lakshmi Munukutla ◽  
Mehrdad N. Ghasemi-Nejhad

2009 ◽  
Vol 34 (23) ◽  
pp. 9461-9478 ◽  
Author(s):  
Wei Dai ◽  
Haijiang Wang ◽  
Xiao-Zi Yuan ◽  
Jonathan J. Martin ◽  
Daijun Yang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document