potential cycling
Recently Published Documents


TOTAL DOCUMENTS

217
(FIVE YEARS 42)

H-INDEX

35
(FIVE YEARS 5)

Sensors ◽  
2021 ◽  
Vol 22 (1) ◽  
pp. 288
Author(s):  
Guzel Ziyatdinova ◽  
Anastasiya Zhupanova ◽  
Rustam Davletshin

Natural phenolic antioxidants are one of the widely studied compounds in life sciences due to their important role in oxidative stress prevention and repair. The structural similarity of these antioxidants and their simultaneous presence in the plant samples stipulate the development of methods for their quantification. The current work deals with the simultaneous determination of vanillin and its bioprecursor ferulic acid using a voltammetric sensor for the first time. A sensor based on the layer-by-layer deposition of the polyaminobenzene sulfonic acid functionalized single-walled carbon nanotubes (f-SWCNTs) and electropolymerized bromocresol purple has been developed for this purpose. The best response of co-existing target analytes was registered for the polymer obtained from the 25 µM dye by 10-fold potential cycling from 0.0 to 1.2 V with the scan rate of 100 mV s−1 in 0.1 M phosphate buffer (PB), pH 7.0. Scanning electron microscopy (SEM), cyclic voltammetry and electrochemical impedance spectroscopy (EIS) confirmed the effectivity of the sensor developed. The linear dynamic ranges of 0.10–5.0 µM and 5.0–25 µM for both analytes with the detection limits of 72 nM and 64 nM for ferulic acid and vanillin, respectively, were achieved in differential pulse mode. The sensor was applied for the analysis of vanilla extracts.


Author(s):  
Yuta Inoue ◽  
Yuto Miyahara ◽  
Kohei Miyazaki ◽  
Yasuyuki Kondo ◽  
Yuko Yokoyama ◽  
...  

Abstract Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCF) is a promising electrocatalyst for the oxygen evolution reaction (OER) in alkaline solution. The OER activities of BSCF are gradually enhanced by prolonging the duration of electrochemical operation at OER potentials, but the underlying cause is not fully understood. In this study, we investigated the role of chemical operation, equivalent to immersion in alkaline solution, in the time-course of OER enhancement of BSCF. Interestingly, the time-course OER enhancement of BSCF was promoted not only by electrochemical operation, which corresponds to potential cycling in the OER region, but also by chemical operation. In situ Raman measurements clarified that chemical operation had a lower rate of surface amorphization than electrochemical operation. On the other hand, the leaching behavior of A-site cations was comparable between chemical and electrochemical operations. Since the OER activity of BSCF was stabilized by saturating the electrolyte with Ba2+, “chemical” A-site leaching was key to inducing the time-course OER enhancement on perovskite electrocatalysts. Based on these results, we provide a fundamental understanding of the role of chemical operation in the OER properties of perovskites.


Author(s):  
Xianzhong Sun ◽  
Penglei Wang ◽  
Yabin An ◽  
Xiong Zhang ◽  
Shuanghao Zheng ◽  
...  

Abstract Lithium-ion capacitors (LICs) bridge the gap between lithium-ion batteries (LIBs) and electrical double-layer capacitors (EDLCs) owing to their unique energy storage mechanisms. From the viewpoints of electrode materials and cell design, the pre-lithiation process is indispensable for improving the working voltage and energy density of LICs. However, the conventional physical short-circuit (PSC) method is time-consuming, which limits the mass-production of practical large-capacity LIC cells. Three alternative pre-lithiation protocols have been proposed, combining the PSC protocol and electrochemical approaches to shorten the pre-lithiation time. The prototype LIC pre-lithiated by using the open-circuit potential cycling (OPC) protocol has the lowest internal resistance and superior high-rate capability (even at 200C-rate). The 900-F large-capacity laminated LIC cells have been assembled and pre-lithiated to validate the feasibility of this method. The pre-lithiation time has been reduced from 470 h (PSC protocol) to 19 h (OPC protocol). This combined protocol is presumed to counteract the voltage loss and enhance the Li+ ion diffusion between multiple anode electrodes during the pre-lithiation process.


Polymers ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 3866
Author(s):  
Varvara Kabanova ◽  
Oxana Gribkova ◽  
Alexander Nekrasov

The electrochemical synthesis of poly(3,4-ethylenedioxythiophene) (PEDOT) was first carried out in the presence of mixtures of flexible-chain and rigid-chain polyacids and their Na-salts. Earlier on with the example of polyaniline, we have shown the non-additive effect of the rigid-chain component of polyacid mixtures on the electrodeposition of polyaniline films, their morphology and spectroelectrochemical properties. In this study, we confirmed the non-additive effect and showed that such mixed PEDOT–polyelectrolyte films possess unique morphology, spectroelectrochemical and ammonia sensing properties. The electrosynthesis was carried out in potential cycling, galvanostatic and potentiostatic regimes and monitored by in situ UV–Vis spectroscopy. UV–Vis spectroelectrochemistry of the obtained PEDOT–polyelectrolyte films revealed the dominating influence of the rigid-chain polyacid on the electronic structure of the mixed complexes. The mixed PEDOT–polyacid films demonstrated the best ammonia sensing performance (in the range of 5 to 25 ppm) as compared to the films of individual PEDOT–polyelectrolyte films.


Nanomaterials ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 2001
Author(s):  
Vu Khac Hoang Bui ◽  
Tuyet Nhung Pham ◽  
Jaehyun Hur ◽  
Young-Chul Lee

To enhance the performance of lithium-ion batteries, zinc oxide (ZnO) has generated interest as an anode candidate owing to its high theoretical capacity. However, because of its limitations such as its slow chemical reaction kinetics, intense capacity fading on potential cycling, and low rate capability, composite anodes of ZnO and other materials are manufactured. In this study, we introduce binary and ternary composites of ZnO with other metal oxides (MOs) and carbon-based materials. Most ZnO-based composite anodes exhibit a higher specific capacity, rate performance, and cycling stability than a single ZnO anode. The synergistic effects between ZnO and the other MOs or carbon-based materials can explain the superior electrochemical characteristics of these ZnO-based composites. This review also discusses some of their current limitations.


2021 ◽  
Vol 01 (03) ◽  
pp. 1-1
Author(s):  
Lin Xie ◽  
◽  
Donald Kirk ◽  

Fe-rich alloys have been widely studied as catalyst materials for the cathodic oxygen reduction reaction (ORR) in hydrogen fuel cells, and many have shown high activities. The stability of Fe-rich catalysts has also been researched, and some studies have shown promising results using an accelerated stress test (AST), which uses a potential cycling method. However, for commercial fuel cell applications, such as standby power systems, the catalyst has to tolerate a high potential for a long period, which can not be represented by the AST test. In this paper, the cathode stability of a Fe-rich catalyst was studied using a standby cell potential of 0.9V, a potential shown to be challenging for the competing Pt catalysts. After 1500 hrs of testing, significant morphology changes of both the tested cathode and anode were found due to a Fe leaching process. Other alloy materials, including Ni, Cr, and Mn, were also found leached out along with the Fe species from the catalyst framework. The results are a cautionary note for using Fe based catalysts for AEMFC cathodes.


Energies ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2975
Author(s):  
Zikhona Nondudule ◽  
Jessica Chamier ◽  
Mahabubur Chowdhury

To decrease the cost of fuel cell manufacturing, the amount of platinum (Pt) in the catalyst layer needs to be reduced. In this study, ionomer gradient membrane electrode assemblies (MEAs) were designed to reduce Pt loading without sacrificing performance and lifetime. A two-layer stratification of the cathode was achieved with varying ratios of 28 wt. % ionomer in the inner layer, on the membrane, and 24 wt. % on the outer layer, coated onto the inner layer. To study the MEA performance, the electrochemical surface area (ECSA), polarization curves, and electrochemical impedance spectroscopy (EIS) responses were evaluated under 20, 60, and 100% relative humidity (RH). The stratified MEA Pt loading was reduced by 12% while maintaining commercial equivalent performance. The optimal two-layer design was achieved when the Pt loading ratio between the layers was 1:6 (inner:outer layer). This MEA showed the highest ECSA and performance at 0.65 V with reduced mass transport losses. The integrity of stratified MEAs with lower Pt loading was evaluated with potential cycling and proved more durable than the monolayer MEA equivalent. The higher ionomer loading adjacent to the membrane and the bi-layer interface of the stratified catalyst layer (CL) increased moisture in the cathode CL, decreasing the degradation rate. Using ionomer stratification to decrease the Pt loading in an MEA yielded a better performance compared to the monolayer MEA design. This study, therefore, contributes to the development of more durable, cost-effective MEAs for low-temperature proton exchange membrane fuel cells.


Sign in / Sign up

Export Citation Format

Share Document