scholarly journals Registration, Orientation and Edge Detection from Digital Mammogram Images

2020 ◽  
Vol 11 (1) ◽  
pp. 1-8
Author(s):  
Indra Kanta Maitra ◽  
◽  
Samir Kumar Bandyopadhyay ◽  
2015 ◽  
Vol 15 (01) ◽  
pp. 1550001 ◽  
Author(s):  
A. Suruliandi ◽  
G. Murugeswari ◽  
P. Arockia Jansi Rani

Digital image processing techniques are very useful in abnormality detection in digital mammogram images. Nowadays, texture-based image segmentation of digital mammogram images is very popular due to its better accuracy and precision. Local binary pattern (LBP) descriptor has attracted many researchers working in the field of texture analysis of digital images. Because of its success, many texture descriptors have been introduced as variants of LBP. In this work, we propose a novel texture descriptor called generic weighted cubicle pattern (GWCP) and we analyzed the proposed operator for texture image classification. We also performed abnormality detection through mammogram image segmentation using k-Nearest Neighbors (KNN) algorithm and compared the performance of the proposed texture descriptor with LBP and other variants of LBP namely local ternary pattern (LTPT), extended local texture pattern (ELTP) and local texture pattern (LTPS). For evaluation, we used the performance metrics such as accuracy, error rate, sensitivity, specificity, under estimation fraction and over estimation fraction. The results prove that the proposed method outperforms other descriptors in terms of abnormality detection in mammogram images.


2022 ◽  
pp. 340-349
Author(s):  
Alankrita Aggarwal ◽  
Deepak Chatha

An artificial neural network (ANN) is used to resolve problems related to complex scenarios and logical thinking. Nowadays, a cause for concern is the mortality rate among women due to cancer. Generally, women to around 45 years old are the most vulnerable to this disease. Early detection is the only hope for the patient to survive, otherwise it may reach an unrecoverable stage. Currently, there are numerous techniques available for the diagnosis of such diseases out of which mammography is the most trustworthy method for detecting early stage cancer. The analysis of these mammogram images is always difficult to analyze due to low contrast and non-uniform background. The mammogram images are scanned, digitized for processing, nut that further reduces the contrast between region of interest (ROI) and the background. Furthermore, presence of noise, glands, and muscles leads to background contrast variations. The boundaries of the suspected tumor area are always fuzzy and improper. The aim of this article is to develop a robust edge detection technique which works optimally on mammogram images to segment a tumor area.


Sign in / Sign up

Export Citation Format

Share Document