scholarly journals Calculate central limit theorem for the number of empty cells after allocation of particles

2021 ◽  
Vol 5 (1) ◽  
pp. 1-7
Author(s):  
Odila Abduraimovna Islamova ◽  
Zoya Sergeevna Chay ◽  
Feruza Saidovna Rakhimova ◽  
Feruza Saydaxmatovna Abdullayeva

This work belongs to the field of limit theorems for separable statistics. In particular, this paper considers the number of empty cells after placing particles in a finite number of cells, where each particle is placed in a polynomial scheme. The statistics under consideration belong to the class of separable statistics, which were previously considered in (Mirakhmedov: 1985), where necessary statements for the layout of particles in a countable number of cells were proved. The same scheme was considered in (Asimov: 1982), in which the conditions for the asymptotic normality of random variables were established. In this paper, the asymptotic normality of the statistics in question is proved and an estimate of the remainder term in the central limit theorem is obtained. In summary, the demand for separable statistics systems is growing day by day to address large-scale databases or to facilitate user access to data management. Because such systems are not only used for data entry and storage, they also describe their structure: file collection supports logical consistency; provides data processing language; restores data after various interruptions; database management systems allow multiple users.

1976 ◽  
Vol 13 (1) ◽  
pp. 148-154 ◽  
Author(s):  
D. L. McLeish

A functional central limit theorem extending the central limit theorem of Chung (1954) for the Robbins–Munro procedure is proved. It is shown that the asymptotic normality is preserved under certain random stopping rules.


1976 ◽  
Vol 13 (01) ◽  
pp. 148-154
Author(s):  
D. L. McLeish

A functional central limit theorem extending the central limit theorem of Chung (1954) for the Robbins–Munro procedure is proved. It is shown that the asymptotic normality is preserved under certain random stopping rules.


2021 ◽  
Vol 36 (2) ◽  
pp. 243-255
Author(s):  
Wei Liu ◽  
Yong Zhang

AbstractIn this paper, we investigate the central limit theorem and the invariance principle for linear processes generated by a new notion of independently and identically distributed (IID) random variables for sub-linear expectations initiated by Peng [19]. It turns out that these theorems are natural and fairly neat extensions of the classical Kolmogorov’s central limit theorem and invariance principle to the case where probability measures are no longer additive.


Author(s):  
Felix Herold ◽  
Daniel Hug ◽  
Christoph Thäle

AbstractPoisson processes in the space of $$(d-1)$$ ( d - 1 ) -dimensional totally geodesic subspaces (hyperplanes) in a d-dimensional hyperbolic space of constant curvature $$-1$$ - 1 are studied. The k-dimensional Hausdorff measure of their k-skeleton is considered. Explicit formulas for first- and second-order quantities restricted to bounded observation windows are obtained. The central limit problem for the k-dimensional Hausdorff measure of the k-skeleton is approached in two different set-ups: (i) for a fixed window and growing intensities, and (ii) for fixed intensity and growing spherical windows. While in case (i) the central limit theorem is valid for all $$d\ge 2$$ d ≥ 2 , it is shown that in case (ii) the central limit theorem holds for $$d\in \{2,3\}$$ d ∈ { 2 , 3 } and fails if $$d\ge 4$$ d ≥ 4 and $$k=d-1$$ k = d - 1 or if $$d\ge 7$$ d ≥ 7 and for general k. Also rates of convergence are studied and multivariate central limit theorems are obtained. Moreover, the situation in which the intensity and the spherical window are growing simultaneously is discussed. In the background are the Malliavin–Stein method for normal approximation and the combinatorial moment structure of Poisson U-statistics as well as tools from hyperbolic integral geometry.


2011 ◽  
Vol 26 (24) ◽  
pp. 1771-1782 ◽  
Author(s):  
H. C. EGGERS ◽  
M. B. DE KOCK ◽  
J. SCHMIEGEL

Lowest-order cumulants provide important information on the shape of the emission source in femtoscopy. For the simple case of noninteracting identical particles, we show how the fourth-order source cumulant can be determined from measured cumulants in momentum space. The textbook Gram–Charlier series is found to be highly inaccurate, while the related Edgeworth series provides increasingly accurate estimates. Ordering of terms compatible with the Central Limit Theorem appears to play a crucial role even for non-Gaussian distributions.


Sign in / Sign up

Export Citation Format

Share Document