Reducing the Carbon Footprint of the Hyannis WPCF Through Renewable Energy Production and Energy Efficiency Measures

2011 ◽  
Vol 2011 (16) ◽  
pp. 1493-1509
Author(s):  
Marc Drainville ◽  
Anastasia Rudenko ◽  
Dale Saad ◽  
Peter S. Doyle
2017 ◽  
Vol 139 (3) ◽  
Author(s):  
Baqer Ameer ◽  
Moncef Krarti

In this paper, a general methodology for designing carbon-neutral residential communities is presented. Both energy efficiency measures and renewable energy technologies are considered in the design approach. First, energy end-uses for the buildings within the community are optimized based on a set of cost-effective energy efficiency measures that are selected based on a life-cycle cost analysis. Then, renewable energy technologies are considered to meet the energy needs for the residential community and ensure carbon-neutrality on an annual basis. The methodology is applied to design optimal and carbon-neutral hybrid electrical generation systems for three Kuwaiti residential communities with different sizes and energy efficiency designs. For Kuwait, it is found that wind turbines can cost-effectively generate significant electricity to meet most of the energy needs for the residential communities and thus reducing the country's reliance on fuel-based power plants. Specifically, it is found that wind turbines can generate electricity at a cost of $0.068/kWh well below the current grid power production costs of $0.103/kWh. Moreover, the analysis indicates that concentrated solar power (CSP) can be utilized to achieve carbon-neutral residential communities but at a levelized energy cost of $0.13/kWh slightly lower than the current grid power generation and distribution costs of $0.133/kWh.


Energies ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 5151 ◽  
Author(s):  
Ieva Pakere ◽  
Dace Lauka ◽  
Dagnija Blumberga

The main aim of this study is to evaluate the results achieved by implementation of different support policies in form of subsidies for energy efficiency improvements and transition to renewable energy sources. The article compares the energy efficiency measures in district heating systems with other support program. In order to assess the effectiveness of implementation of different renewable energy technologies and energy efficiency projects, the levelized costs of saved energy for different support programs were determined. Authors compared different co-financed projects related to replacement of fossil fuel energy sources in district heating (mainly to biomass) and the installation of new biomass boilers, heat pumps, solar collectors and other local technologies in municipal buildings. Results show that financial support for energy efficiency measures in industrial enterprises and district heating systems has been most cost-effective, mainly due to the low co-financing rate (30%) and the high potential for energy savings in different production processes. Authors have identified the blind-spots within the funding allocation for different municipalities, which is not always dedicated to achieved energy savings.


Author(s):  
James Bambara ◽  
Andreas K. Athienitis ◽  
Ursula Eicker

The energy footprint of houses can be reduced by replacing the aging stock with higher density and more energy efficient homes equipped with on-site renewable energy production. In this study, a “double density” simulation scenario is considered where each existing detached house in a community is replaced with two houses of equal living area on the same land lot. The new houses were assumed to be equipped with several energy efficiency measures (envelope, HVAC, and domestic hot water) and a building-integrated photovoltaic (BIPV) roof. The TRNSYS software was used to simulate the annual energy performance of the buildings in Montreal, Québec, Canada (45.5°N). It was found that the two new houses, which can accommodate twice the number of people on the same land lot, consumed 30% less energy than the existing house. Individually, each of the new houses required 65% less electricity than the existing house (reduced from 22,560 to 7,850 kWh yr−1). In addition, the BIPV roof installed on the two new houses could generate nearly three times more electricity (44,000 kWh yr−1) than they consumed (15,700 kWh yr−1). Annually, nearly half (44%) of the house's electricity can be directly supplied by the BIPV system. A significant portion of the annual solar electricity generation (84%), which cannot be directly utilized by the houses, can be stored on-site for later use to increase self-consumption (e.g., power-to-thermal energy or charging electric vehicles) or could be exported to the grid to support decarbonization elsewhere (e.g., production of hydrogen fuel for transportation). The combined effect of energy efficient construction and on-site renewable energy production would enable occupants to shift from consuming 5,640 kWh yr−1 to producing 3,540 kWh yr−1. Residential densification can significantly contribute toward retrofitting existing communities into resilient positive energy districts.


Sign in / Sign up

Export Citation Format

Share Document