scholarly journals Sequence Alignment Using Machine Learning for Accurate Template-based Protein Structure Prediction

BIO-PROTOCOL ◽  
2020 ◽  
Vol 10 (9) ◽  
Author(s):  
Shuichiro Makigaki ◽  
Takashi Ishida
2003 ◽  
Vol 53 (S6) ◽  
pp. 424-429 ◽  
Author(s):  
Bruno Contreras-Moreira ◽  
Paul W. Fitzjohn ◽  
Marc Offman ◽  
Graham R. Smith ◽  
Paul A. Bates

2021 ◽  
Author(s):  
Ben Geoffrey A S

This work seeks to combine the combined advantage of leveraging these emerging areas of Artificial Intelligence and quantum computing in applying it to solve the specific biological problem of protein structure prediction using Quantum Machine Learning algorithms. The CASP dataset from ProteinNet was downloaded which is a standardized data set for machine learning of protein structure. Its large and standardized dataset of PDB entries contains the coordinates of the backbone atoms, corresponding to the sequential chain of N, C_alpha, and C' atoms. This dataset was used to train a quantum-classical hybrid Keras deep neural network model to predict the structure of the proteins. To visually qualify the quality of the predicted versus the actual protein structure, protein contact maps were generated with the experimental and predicted protein structure data and qualified. Therefore this model is recommended for the use of protein structure prediction using AI leveraging the power of quantum computers. The code is provided in the following Github repository https://github.com/bengeof/Protein-structure-prediction-using-AI-and-quantum-computers.


2020 ◽  
Author(s):  
Fusong Ju ◽  
Jianwei Zhu ◽  
Bin Shao ◽  
Lupeng Kong ◽  
Tie-Yan Liu ◽  
...  

Protein functions are largely determined by the final details of their tertiary structures, and the structures could be accurately reconstructed based on inter-residue distances. Residue co-evolution has become the primary principle for estimating inter-residue distances since the residues in close spatial proximity tend to co-evolve. The widely-used approaches infer residue co-evolution using an indirect strategy, i.e., they first extract from the multiple sequence alignment (MSA) of query protein some handcrafted features, say, co-variance matrix, and then infer residue co-evolution using these features rather than the raw information carried by MSA. This indirect strategy always leads to considerable information loss and inaccurate estimation of inter-residue distances. Here, we report a deep neural network framework (called CopulaNet) to learn residue co-evolution directly from MSA without any handcrafted features. The CopulaNet consists of two key elements: i) an encoder to model context-specific mutation for each residue, and ii) an aggregator to model correlations among residues and thereafter infer residue co-evolutions. Using the CASP13 (the 13th Critical Assessment of Protein Structure Prediction) target proteins as representatives, we demonstrated the successful application of CopulaNet for estimating inter-residue distances and further predicting protein tertiary structure with improved accuracy and efficiency. Head-to-head comparison suggested that for 24 out of the 31 free modeling CASP13 domains, ProFOLD outperformed AlphaFold, one of the state-of-the-art prediction approaches.


2018 ◽  
Vol 7 (4.5) ◽  
pp. 168
Author(s):  
Khatri Chandni ◽  
Prof. Mrudang Pandya ◽  
Dr. Sunil Jardosh

In recent years, Machine Learning techniques that are based on Deep Learning networks that show a great promise in research          communities.Successful methods for deep learning involve Artificial Neural Networks and Machine Learning. Deep Learning solves severa  problems in bioinformatics. Protein Structure Prediction is one of the most important fields that can be solving using Deep Learning  approaches.These protein are categorized on basis of occurrence of amino acid patterns occur to extract the feature. In these paper aimed to review work based on protein structure prediction solve using Deep Learning Networks. Objective is to review motivate and facilitatethese deep learn the network for predicting protein sequences using Deep Learning. 


2020 ◽  
Vol 21 (S1) ◽  
Author(s):  
Nasrin Akhter ◽  
Gopinath Chennupati ◽  
Hristo Djidjev ◽  
Amarda Shehu

Abstract Background Identifying one or more biologically-active/native decoys from millions of non-native decoys is one of the major challenges in computational structural biology. The extreme lack of balance in positive and negative samples (native and non-native decoys) in a decoy set makes the problem even more complicated. Consensus methods show varied success in handling the challenge of decoy selection despite some issues associated with clustering large decoy sets and decoy sets that do not show much structural similarity. Recent investigations into energy landscape-based decoy selection approaches show promises. However, lack of generalization over varied test cases remains a bottleneck for these methods. Results We propose a novel decoy selection method, ML-Select, a machine learning framework that exploits the energy landscape associated with the structure space probed through a template-free decoy generation. The proposed method outperforms both clustering and energy ranking-based methods, all the while consistently offering better performance on varied test-cases. Moreover, ML-Select shows promising results even for the decoy sets consisting of mostly low-quality decoys. Conclusions ML-Select is a useful method for decoy selection. This work suggests further research in finding more effective ways to adopt machine learning frameworks in achieving robust performance for decoy selection in template-free protein structure prediction.


Sign in / Sign up

Export Citation Format

Share Document