scholarly journals Natural Attributes and Agricultural Implications of Somatic Genome Variation

Genetics ◽  
2000 ◽  
Vol 155 (3) ◽  
pp. 1119-1125
Author(s):  
Laura Wong ◽  
Lana Klionsky ◽  
Steve Wickert ◽  
Virginia Merriam ◽  
Eduardo Orias ◽  
...  

Abstract The macronucleus of the ciliate Tetrahymena thermophila contains a fragmented somatic genome consisting of several hundred identifiable chromosome pieces. These pieces are generated by site-specific fragmentation of the germline chromosomes and most of them are represented at an average of 45 copies per macronucleus. In the course of successive divisions of an initially heterozygous macronucleus, the random distribution of alleles of loci carried on these copies eventually generates macronuclei that are pure for one allele or the other. This phenomenon is called phenotypic assortment. We have previously reported the existence of loci that assort together (coassort) and hypothesized that these loci reside on the same macronuclear piece. The work reported here provides new, rigorous genetic support for the hypothesis that macronuclear autonomously replicating chromosome pieces are the physical basis of coassortment groups. Thus, coassortment allows the mapping of the somatic genome by purely genetic means. The data also strongly suggest that the random distribution of alleles in the Tetrahymena macronucleus is due to the random distribution of the MAC chromosome pieces that carry them.


2021 ◽  
Vol 41 (3) ◽  
Author(s):  
Emilly Schutt ◽  
Maria Hołyńska ◽  
Grace A Wyngaard

Abstract Genome size is a fundamental property of organisms that impacts their molecular evolution and life histories. The hypothesis that somatic genome sizes in copepods in the order Cyclopoida are small and evolutionary constrained relative to those in the order Calanoida was proposed 15 years ago. Since then, the number of estimates has almost doubled and the taxon sampling has broadened. Here we add 14 new estimates from eight genera of freshwater cyclopoids that vary from 0.2 to 6.6 pg of DNA per nucleus in the soma; all except one are 2.0 pg DNA per nucleus or smaller. This new sample adds to the pattern of genome size in copepods and is remarkably similar to the distribution on which the original hypothesis was based, as well as those of subsequently published estimates. Embryonic chromatin diminution, during which large portions of DNA are excised from the presomatic cell lineage, is reported in Paracyclops affinis (G.O. Sars, 1863). This diminution results in a somatic genome that is one half the size of the germline genome. When the sizes of the germline genomes carried in presomatic cells of cyclopoid species that possess chromatin diminution are considered, the prediminuted germline genome sizes of cyclopoid embryos overlap with the distribution of calanoid somatic genome sizes, supporting the hypothesis that chromatin diminution has functioned as a mechanism to constrain somatic nuclear DNA content in cyclopoid copepods. Geographically based variation in genome size among populations is also reviewed.


Genetics ◽  
2018 ◽  
Vol 211 (2) ◽  
pp. 773-786 ◽  
Author(s):  
Sriram Vijayraghavan ◽  
Stanislav G. Kozmin ◽  
Pooja K. Strope ◽  
Daniel A. Skelly ◽  
Zhenguo Lin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document