Impacts of Somatic Genome Variation on Genetic Theories and Breeding Concepts, and the Distinction between Mendelian Genetic Variation, Somagenetic Variation, and Epigenetic Variation

Author(s):  
Xiu-Qing Li
Plants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 291
Author(s):  
Biao Ni ◽  
Jian You ◽  
Jiangnan Li ◽  
Yingda Du ◽  
Wei Zhao ◽  
...  

Ecological adaptation plays an important role in the process of plant expansion, and genetics and epigenetics are important in the process of plant adaptation. In this study, genetic and epigenetic analyses and soil properties were performed on D. angustifolia of 17 populations, which were selected in the tundra zone on the western slope of the Changbai Mountains. Our results showed that the levels of genetic and epigenetic diversity of D. angustifolia were relatively low, and the main variation occurred among different populations (amplified fragment length polymorphism (AFLP): 95%, methylation sensitive amplification polymorphism (MSAP): 87%). In addition, DNA methylation levels varied from 23.36% to 35.70%. Principal component analysis (PCA) results showed that soil properties of different populations were heterogeneous. Correlation analyses showed that soil moisture, pH and total nitrogen were significantly correlated with genetic diversity of D. angustifolia, and soil temperature and pH were closely related to epigenetic diversity. Simple Mantel tests and partial Mantel tests showed that genetic variation significantly correlated with habitat or geographical distance. However, the correlation between epigenetic variation and habitat or geographical distance was not significant. Our results showed that, in the case of low genetic variation and genetic diversity, epigenetic variation and DNA methylation may provide a basis for the adaptation of D. angustifolia.


2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Kimberly R. Shorter ◽  
Janet P. Crossland ◽  
Denessia Webb ◽  
Gabor Szalai ◽  
Michael R. Felder ◽  
...  

Deer mice (Peromyscus) offer an opportunity for studying the effects of natural genetic/epigenetic variation with several advantages over other mammalian models. These advantages include the ability to study natural genetic variation and behaviors not present in other models. Moreover, their life histories in diverse habitats are well studied. Peromyscus resources include genome sequencing in progress, a nascent genetic map, and >90,000 ESTs. Here we review epigenetic studies and relevant areas of research involving Peromyscus models. These include differences in epigenetic control between species and substance effects on behavior. We also present new data on the epigenetic effects of diet on coat-color using a Peromyscus model of agouti overexpression. We suggest that in terms of tying natural genetic variants with environmental effects in producing specific epigenetic effects, Peromyscus models have a great potential.


Weed Science ◽  
2021 ◽  
Vol 69 (3) ◽  
pp. 307-332
Author(s):  
Jin Shen ◽  
Zhen Wang ◽  
Yingjuan Su ◽  
Ting Wang

AbstractInvasive species face new selective pressures and low genetic variation caused by genetic bottlenecks and founder effects when they are introduced into novel environments. Epigenetic variation may help them to cope with these problems. Mile-a-minute (Mikania micrantha Kunth) is a highly invasive exotic weed that has seriously damaged biodiversity and agricultural ecosystems. We first adopted methylation-sensitive amplified polymorphism (MSAP) markers to investigate epigenetic variation of 21 M. micrantha populations in southern China, and further explored the effects of environmental factors on population epigenetic differentiation by correlating epigenetic and climate and soil data. Adaptive epiloci positively correlated with climate/soil variables were identified. Minimum temperature of the coldest month and mean temperature of the coldest quarter were considered as decisive factors for its distribution. Climate is presumed to play a relatively more important role than soil in shaping the adaptive epigenetic differentiation in M. micrantha. Under ongoing global warming, populations of M. micrantha are predicted to expand northward. In addition, the weed also presented higher epigenetic variation compared with genetic variation. Leaf shape variation was detected related to methylation-state change at the population level.


2020 ◽  
Author(s):  
Jeannie Mounger ◽  
M. Teresa Boquete ◽  
Marc W. Schmid ◽  
Renan Granado ◽  
Marta H. Robertson ◽  
...  

AbstractThe capacity to respond to environmental challenges ultimately relies on phenotypic variation which manifests from complex interactions of genetic and non-genetic mechanisms through development. While we know something about genetic variation and structure of many species of conservation importance, we know very little about the non-genetic contributions to variation. Rhizophora mangle is a foundation species that occurs in coastal estuarine habitats throughout the neotropics where it provides critical ecosystem functions, and is potentially threatened by climate change. Several studies have documented landscape level patterns of genetic variation in this species, but we know virtually nothing about the inheritance of non-genetic variation. To assess one type of non-genetic variation, we examined the patterns of DNA sequence and DNA methylation in maternal plants and offspring from natural populations of R. mangle from the Gulf Coast of Florida. We used a reduced representation bisulfite sequencing approach (epi-genotyping by sequencing or epiGBS) to address the following questions: a) What are the levels of genetic and epigenetic diversity in natural populations of R. mangle? b) How are genetic and epigenetic variation structured within and among populations? c) How faithfully is epigenetic variation inherited? We found low genetic diversity but high epigenetic diversity from natural populations of maternal plants in the field and that a large portion (up to ~25%) of epigenetic differences among offspring grown in common garden was explained by maternal family. Therefore, epigenetic variation could be an important source of response to challenging environments in the genetically depauperate populations of this foundation species.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Aaron W. Schrey ◽  
Courtney A. C. Coon ◽  
Michael T. Grispo ◽  
Mohammed Awad ◽  
Titus Imboma ◽  
...  

Epigenetic mechanisms impact several phenotypic traits and may be important for ecology and evolution. The introduced house sparrow (Passer domesticus) exhibits extensive phenotypic variation among and within populations. We screened methylation in populations from Kenya and Florida to determine if methylation varied among populations, varied with introduction history (Kenyan invasion <50 years old, Florida invasion ~150 years old), and could potentially compensate for decrease genetic variation with introductions. While recent literature has speculated on the importance of epigenetic effects for biological invasions, this is the first such study among wild vertebrates. Methylation was more frequent in Nairobi, and outlier loci suggest that populations may be differentiated. Methylation diversity was similar between populations, in spite of known lower genetic diversity in Nairobi, which suggests that epigenetic variation may compensate for decreased genetic diversity as a source of phenotypic variation during introduction. Our results suggest that methylation differences may be common among house sparrows, but research is needed to discern whether methylation impacts phenotypic variation.


2018 ◽  
Author(s):  
Mariano Alvarez ◽  
Marta Robertson ◽  
Thomas van Gurp ◽  
Niels Wagemaker ◽  
Delphine Giraud ◽  
...  

AbstractTheory predicts that environmental challenges can shape the composition of populations, which is manifest at the molecular level. Previously, we demonstrated that oil pollution affected gene expression patterns and altered genetic variation in natural populations of the foundation salt marsh grass, Spartina alterniflora. Here, we used a reduced representation bisulfite sequencing approach, epigenotyping by sequencing (epiGBS), to examine relationships among DNA sequence, DNA methylation, gene expression, and exposure to oil pollution. We documented genetic and methylation differentiation between oil-exposed and unexposed populations, suggesting that the Deepwater Horizon oil spill may have selected on genetic variation, and either selected on epigenetic variation or induced particular epigenotypes and expression patterns in exposed compared to unexposed populations. In support of the potential for differential response to the Deepwater Horizon oil spill, we demonstrate genotypic differences in response to oil under controlled conditions. Overall, these findings demonstrate genetic variation, epigenetic variation and gene expression are correlated to exposure to oil pollution, which may all contribute to the response to environmental stress.


Sign in / Sign up

Export Citation Format

Share Document