A new “feasible” arithmetic

2002 ◽  
Vol 67 (1) ◽  
pp. 104-116 ◽  
Author(s):  
Stephen Bellantoni ◽  
Martin Hofmann

AbstractA classical quantified modal logic is used to define a “feasible” arithmetic whose provably total functions are exactly the polynomial-time computable functions. Informally, one understands ⃞∝ as “∝ is feasibly demonstrable”. differs from a system that is as powerful as Peano Arithmetic only by the restriction of induction to ontic (i.e., ⃞-free) formulas. Thus, is defined without any reference to bounding terms, and admitting induction over formulas having arbitrarily many alternations of unbounded quantifiers. The system also uses only a very small set of initial functions.To obtain the characterization, one extends the Curry-Howard isomorphism to include modal operations. This leads to a realizability translation based on recent results in higher-type ramified recursion. The fact that induction formulas are not restricted in their logical complexity, allows one to use the Friedman A translation directly.The development also leads us to propose a new Frege rule, the “Modal Extension” rule: if ⊢ ∝ a then ⊢ A ↔ ∝ for new symbol A.

1999 ◽  
Vol 64 (4) ◽  
pp. 1407-1425
Author(s):  
Claes Strannegård

AbstractWe investigate the modal logic of interpretability over Peano arithmetic. Our main result is a compactness theorem that extends the arithmetical completeness theorem for the interpretability logic ILMω. This extension concerns recursively enumerable sets of formulas of interpretability logic (rather than single formulas). As corollaries we obtain a uniform arithmetical completeness theorem for the interpretability logic ILM and a partial answer to a question of Orey from 1961. After some simplifications, we also obtain Shavrukov's embedding theorem for Magari algebras (a.k.a. diagonalizable algebras).


1988 ◽  
Vol 34 (3) ◽  
pp. 251-259 ◽  
Author(s):  
Giovanna Corsi

2014 ◽  
Vol 7 (3) ◽  
pp. 439-454 ◽  
Author(s):  
PHILIP KREMER

AbstractIn the topological semantics for propositional modal logic, S4 is known to be complete for the class of all topological spaces, for the rational line, for Cantor space, and for the real line. In the topological semantics for quantified modal logic, QS4 is known to be complete for the class of all topological spaces, and for the family of subspaces of the irrational line. The main result of the current paper is that QS4 is complete, indeed strongly complete, for the rational line.


1994 ◽  
Vol 59 (3) ◽  
pp. 1001-1011 ◽  
Author(s):  
Fernando Ferreira

AbstractWe construct a weak second-order theory of arithmetic which includes Weak König's Lemma (WKL) for trees defined by bounded formulae. The provably total functions (with -graphs) of this theory are the polynomial time computable functions. It is shown that the first-order strength of this version of WKL is exactly that of the scheme of collection for bounded formulae.


Sign in / Sign up

Export Citation Format

Share Document