Measurable chromatic numbers

2008 ◽  
Vol 73 (4) ◽  
pp. 1139-1157 ◽  
Author(s):  
Benjamin D. Miller

AbstractWe show that if add(null) = c, then the globally Baire and universally measurable chromatic numbers of the graph of any Borel function on a Polish space are equal and at most three. In particular, this holds for the graph of the unilateral shift on [ℕ]ℕ, although its Borel chromatic number is ℵ0. We also show that if add(null) = c, then the universally measurable chromatic number of every treeing of a measure amenable equivalence relation is at most three. In particular, this holds for “the” minimum analytic graph with uncountable Borel (and Baire measurable) chromatic number. In contrast, we show that for all κ Є6 (2, 3…..ℵ0, c), there is a treeing of E0 with Borel and Baire measurable chromatic number κ. Finally, we use a Glimm–Effros style dichotomy theorem to show that every basis for a non-empty initial segment of the class of graphs of Borel functions of Borel chromatic number at least three contains a copy of (ℝ<ℕ, ⊇).

2002 ◽  
Vol 67 (4) ◽  
pp. 1520-1540 ◽  
Author(s):  
Greg Hjorth

In this note we show:Theorem 1.1. Let G be a Polish group and X a Polish G-space with the induced orbit equivalence relation EG Borel as a subset of X × X. Then exactly one of the following:(I) There is a countable languageℒand a Borel functionsuch that for all x1, x2 ∈ Xor(II) there is a turbulent Polish G-space Y and a continuous G-embeddingThere are various bows and ribbons which can be woven into these statements. We can strengthen (I) by asking that θ also admit a Borel orbit inverse, that is to say some Borel functionfor some Borel set B ⊂ Mod(ℒ), such that for all x ∈ Xand then after having passed to this strengthened version of (I) we still obtain the exact same dichotomy theorem, and hence the conclusion that the two competing versions of (I) are equivalent. Similarly (II) can be relaxed to just asking that τ be a Borel G-embedding, or even simply a Borel reduction of the relevant orbit equivalence relations. It is in fact a consequence of 1.1 that all the plausible weakenings and strengthenings of (I) and (II) are respectively equivalent to one another.I will not closely examine these possible variations here. The equivalences alluded to above follow from our main theorem and the results of [3]. That monograph had previously shown that (I) and (II) are incompatible, and proved a barbaric forerunner of 1.1, and gone on to conjecture the dichotomy result above.


1995 ◽  
Vol 60 (4) ◽  
pp. 1273-1300 ◽  
Author(s):  
Greg Hjorth ◽  
Alexander S. Kechris

Our main goal in this paper is to establish a Glimm-Effros type dichotomy for arbitrary analytic equivalence relations.The original Glimm-Effros dichotomy, established by Effros [Ef], [Ef1], who generalized work of Glimm [G1], asserts that if an Fσ equivalence relation on a Polish space X is induced by the continuous action of a Polish group G on X, then exactly one of the following alternatives holds:(I) Elements of X can be classified up to E-equivalence by “concrete invariants” computable in a reasonably definable way, i.e., there is a Borel function f: X → Y, Y a Polish space, such that xEy ⇔ f(x) = f(y), or else(II) E contains a copy of a canonical equivalence relation which fails to have such a classification, namely the relation xE0y ⇔ ∃n∀m ≥ n(x(n) = y(n)) on the Cantor space 2ω (ω = {0,1,2, …}), i.e., there is a continuous embedding g: 2ω → X such that xE0y ⇔ g(x)Eg(y).Moreover, alternative (II) is equivalent to:(II)′ There exists an E-ergodic, nonatomic probability Borel measure on X, where E-ergodic means that every E-invariant Borel set has measure 0 or 1 and E-nonatomic means that every E-equivalence class has measure 0.


2015 ◽  
Vol 92 (3) ◽  
pp. 761-763 ◽  
Author(s):  
L. I. Bogolubsky ◽  
A. M. Raigorodskii

1989 ◽  
Vol 75 (1-3) ◽  
pp. 343-372 ◽  
Author(s):  
L.A. Székely ◽  
N.C. Wormald

2021 ◽  
Vol 52 (1) ◽  
pp. 113-123
Author(s):  
Peter Johnson ◽  
Alexis Krumpelman

The Babai numbers and the upper chromatic number are parameters that can be assigned to any metric space. They can, therefore, be assigned to any connected simple graph. In this paper we make progress in the theory of the first Babai number and the upper chromatic number in the simple graph setting, with emphasis on graphs of diameter 2.


2006 ◽  
Vol 71 (4) ◽  
pp. 1108-1124 ◽  
Author(s):  
Alex Thompson

AbstractStrengthening a theorem of Hjorth this paper gives a new characterization of which Polish groups admit compatible complete left invariant metrics. As a corollary it is proved that any Polish group without a complete left invariant metric has a continuous action on a Polish space whose associated orbit equivalence relation is not essentially countable.


2013 ◽  
Vol 333-335 ◽  
pp. 1452-1455
Author(s):  
Chun Yan Ma ◽  
Xiang En Chen ◽  
Fang Yang ◽  
Bing Yao

A proper $k$-edge coloring of a graph $G$ is an assignment of $k$ colors, $1,2,\cdots,k$, to edges of $G$. For a proper edge coloring $f$ of $G$ and any vertex $x$ of $G$, we use $S(x)$ denote the set of thecolors assigned to the edges incident to $x$. If for any two adjacent vertices $u$ and $v$ of $G$, we have $S(u)\neq S(v)$,then $f$ is called the adjacent vertex distinguishing proper edge coloring of $G$ (or AVDPEC of $G$ in brief). The minimum number of colors required in an AVDPEC of $G$ is called the adjacent vertex distinguishing proper edge chromatic number of $G$, denoted by $\chi^{'}_{\mathrm{a}}(G)$. In this paper, adjacent vertex distinguishing proper edge chromatic numbers of several classes of complete 5-partite graphs are obtained.


1999 ◽  
Vol 10 (01) ◽  
pp. 19-31 ◽  
Author(s):  
G. SAJITH ◽  
SANJEEV SAXENA

Evidence is given to suggest that minimally vertex colouring an interval graph may not be in NC 1. This is done by showing that 3-colouring a linked list is NC 1-reducible to minimally colouring an interval graph. However, it is shown that an interval graph with a known interval representation and an O(1) chromatic number can be minimally coloured in NC 1. For the CRCW PRAM model, an o( log n) time, polynomial processors algorithm is obtained for minimally colouring an interval graph with o( log n) chromatic number and a known interval representation. In particular, when the chromatic number is O(( log n)1-ε), 0<ε<1, the algorithm runs in O( log n/ log log n) time. Also, an O( log n) time, O(n) cost, EREW PRAM algorithm is found for interval graphs of arbitrary chromatic numbers. The following lower bound result is also obtained: even when the left and right endpoints of the interval are separately sorted, minimally colouring an interval graph needs Ω( log n/ log log n) time, on a CRCW PRAM, with a polynomial number of processors.


Sign in / Sign up

Export Citation Format

Share Document