scholarly journals INDEXING AND QUERY PROCESSING TECHNIQUES IN SPATIO-TEMPORAL DATA

2016 ◽  
Vol 06 (03) ◽  
pp. 1198-1217 ◽  
Author(s):  
John A ◽  
◽  
Sugumaran M ◽  
Rajesh R S ◽  
◽  
...  
2005 ◽  
Vol 9 (4) ◽  
pp. 343-365 ◽  
Author(s):  
Mohamed F. Mokbel ◽  
Xiaopeng Xiong ◽  
Moustafa A. Hammad ◽  
Walid G. Aref

2020 ◽  
Author(s):  
Martijn P. A. van den Ende ◽  
Jean-Paul Ampuero

Abstract. The versatility and cost-efficiency of fibre-optic Distributed Acoustic Sensing (DAS) technologies facilitate geophysical monitoring in environments that were previously inaccessible for instrumentation. Moreover, the spatio-temporal data density permitted by DAS naturally appeals to seismic array processing techniques, such as beamforming for source location. However, the measurement principle of DAS is inherently different from that of conventional seismometers, providing measurements of ground strain rather than ground motion, and so the suitability of traditional seismological methods requires in-depth evaluation. In this study, we evaluate the performance of a DAS array in the task of seismic beamforming, in comparison with a co-located nodal seismometer array. We find that, even though the nodal array achieves excellent performance in localising a regional ML 4.3 earthquake, the DAS array exhibits poor waveform coherence and consequently produces inadequate beamforming results that are dominated by the signatures of shallow scattered waves. We demonstrate that this behaviour is likely inherent to the DAS measurement principle, and so new strategies need to be adopted to tailor array processing techniques to this emerging measurement technology.


2019 ◽  
Vol 942 (12) ◽  
pp. 22-28
Author(s):  
A.V. Materuhin ◽  
V.V. Shakhov ◽  
O.D. Sokolova

Optimization of energy consumption in geosensor networks is a very important factor in ensuring stability, since geosensors used for environmental monitoring have limited possibilities for recharging batteries. The article is a concise presentation of the research results in the area of increasing the energy consumption efficiency for the process of collecting spatio-temporal data with wireless geosensor networks. It is shown that in the currently used configurations of geosensor networks there is a predominant direction of the transmitted traffic, which leads to the fact that through the routing nodes that are close to the sinks, a much more traffic passes than through other network nodes. Thus, an imbalance of energy consumption arises in the network, which leads to a decrease in the autonomous operation time of the entire wireless geosensor networks. It is proposed to use the possible mobility of sinks as an optimization resource. A mathematical model for the analysis of the lifetime of a wireless geosensor network using mobile sinks is proposed. The model is analyzed from the point of view of optimization energy consumption by sensors. The proposed approach allows increasing the lifetime of wireless geosensor networks by optimizing the relocation of mobile sinks.


Sign in / Sign up

Export Citation Format

Share Document