Robust Frequency Control of Wind-Diesel Hybrid Power System Using Superconducting Magnetic Energy Storage

Author(s):  
Issarachai Ngamroo

In an isolated wind-diesel hybrid power system, the variable power consumptions as well as the intermittent wind power may cause a large fluctuation of system frequency. If the system frequency can not be controlled and kept in the acceptable range, the system may lose stability. To reduce system frequency fluctuation, a superconducting magnetic energy storage (SMES) which is able to supply and absorb active power quickly, can be applied. In addition, variation of system parameters, unpredictable power demands and fluctuating wind power etc., cause various uncertainties in the system. A SMES controller which is designed without considering such uncertainties may lose control effect. To enhance the robustness of SMES controller, this paper focuses on a new robust control design of SMES for frequency control in a wind-diesel system. The coprime factorization is used to represent the unstructured uncertainties in a system modeling. The structure of a SMES controller is the practical first-order lead-lag compensator. To tune the controller parameters, the optimization problem is formulated based on loop shaping technique. The genetic algorithm is applied to solve the problem and achieve the control parameters. Simulation results confirm the high robustness of the proposed SMES controller with small power capacity against various disturbances and system uncertainties in comparison with SMES in the previous research.

2019 ◽  
Vol 43 (6) ◽  
pp. 609-624 ◽  
Author(s):  
Emad A Mohamed ◽  
Yasunori Mitani

This article proposes a robust load frequency control using a new optimal proportional–integral–derivative controller–based genetic moth swarm algorithm for islanded microgrids considering high wind power penetration. In such microgrids, the replacement of conventional generator units with a large number of renewable energy sources reduces the system inertia, which in turn causes undesirable influence on microgrid frequency stability, leading to weakening of the microgrid. Furthermore, sudden load shedding, load restoring, and short circuits caused large frequency fluctuations which threaten the system security and could lead to complete blackouts as well as damages to the system equipment. In order to solve this challenge, this study proposes a new coordinated optimal load frequency control plus modified control signal to superconducting magnetic energy storage for compensating the microgrid frequency deviation (∆ f). To prove the effectiveness of the proposed coordinated control strategy, an islanded microgrid was tested for the MATLAB/Simulink simulation. The physical constraints of the turbines such as generation rate constraints and speed governor dead band are considered in this study. The results confirmed the effectiveness and robustness of the proposed coordination performance against all scenarios of different load profiles, wind power fluctuation, and system uncertainties in microgrid integrated with high penetration of wind farms. Moreover, the results have been compared with both: the optimal load frequency control with/without the effect of conventional superconducting magnetic energy storage.


Sign in / Sign up

Export Citation Format

Share Document