Explicit asymptotics for tsunami waves in framework of the piston model

2006 ◽  
Vol 8 (4) ◽  
pp. 1-12 ◽  
Author(s):  
S. Yu. Dobrokhotov ◽  
S. Ya. Sekerzh-Zenkovich ◽  
B. Tirozzi ◽  
B. Volkov
Keyword(s):  
Geosciences ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 147
Author(s):  
Benjamin R. Jordan

Kukuiho’olua Island is an islet that lies 164 m due north of Laie Point, a peninsula of cemented, coastal, Pleistocene and Holocene sand dunes. Kukuiho’olua Island consists of the same dune deposits as Laie Point and is cut by a sea arch, which, documented here for first time, may have formed during the 1 April 1946 “April Fools’s Day Tsunami.” The tsunami-source of formation is supported by previous modeling by other authors, which indicated that the geometry of overhanging sea cliffs can greatly strengthen and focus the force of tsunami waves. Additional changes occurred to the island and arch during the 2015–2016 El Niño event, which was one of the strongest on record. During the event, anomalous wave heights and reversed wind directions occurred across the Pacific. On the night of 24–25 February 2016, large storm waves, resulting from the unique El Niño conditions washed out a large boulder that had lain within the arch since its initial formation, significantly increasing the open area beneath the arch. Large waves also rose high enough for seawater to flow over the peninsula at Laie Point, causing significant erosion of its upper surface. These changes at Laie Point and Kukuio’olua Island serve as examples of long-term, intermittent change to a coastline—changes that, although infrequent, can occur quickly and dramatically, potentially making them geologic hazards.


2016 ◽  
Vol 7 (2) ◽  
pp. 265-281
Author(s):  
Yuri S Karinski ◽  
Dina Tsemakh ◽  
Vladimir R Feldgun ◽  
David Z Yankelevsky

Author(s):  
Gayaz S. Khakimzyanov ◽  
Oleg I. Gusev ◽  
Sofya A. Beizel ◽  
Leonid B. Chubarov ◽  
Nina Yu. Shokina

AbstractNumerical technique for studying surface waves appearing under the motion of a submarine landslide is discussed. This technique is based on the application of the model of a quasi-deformable landslide and two shallow water models, namely, the classic (dispersion free) one and the completely nonlinear dispersive model of the second hydrodynamic approximation. Numerical simulation of surface waves generated by a large model landslide on the continental slope of the Black Sea near the Russian coast is performed. It is shown that the dispersion has a significant impact on the picture of propagation of tsunami waves on sufficiently long paths.


Landslides ◽  
2016 ◽  
Vol 13 (6) ◽  
pp. 1593-1593
Author(s):  
Behzad Ataie-Ashtiani
Keyword(s):  

2021 ◽  
Author(s):  
Toshikazu Ebisuzaki

Abstract A tsunami earthquake is defined as an earthquake which induces abnormally strong tsunami waves compared with its seismic magnitude (Kanamori 1972; Kanamori and Anderson 1975; Tanioka and Seno 2001). We investigate the possibility that the surface waves (Rayleigh, Love, and tsunami waves) in tsunami earthquakes are amplified by secondly submarine landslides, induced by the liquefaction of the sea floor due to the strong vibrations of the earthquakes. As pointed by Kanamori (2004), tsunami earthquakes are significantly stronger in longer waves than 100 s and low in radiation efficiencies of seismic waves by one or two order of magnitudes. These natures are in favor of a significant contribution of landslides. The landslides can generate seismic waves with longer period with lower efficiency than the tectonic fault motions (Kanamori et al 1980; Eissler and Kanamori 1987; Hasegawa and Kanamori 1987). We further investigate the distribution of the tsunami earthquakes and found that most of their epicenters are located at the steep slopes in the landward side of the trenches or around volcanic islands, where the soft sediments layers from the landmass are nearly critical against slope failures. This distribution suggests that the secondly landslides may contribute to the tsunami earthquakes. In the present paper, we will investigate the rapture processes determined by the inversion analysis of seismic surface waves of tsunami earthquakes can be explained by massive landslides, simultaneously triggered by earthquakes in the tsunami earthquakes which took place near the trenches.


Author(s):  
Jui-Chun Freya Chen ◽  
Wu-Cheng Chi ◽  
Chu-Fang Yang

Abstract Developing new ways to observe tsunami contributes to tsunami research. Tidal and deep-ocean gauges are typically used for coastal and offshore observations. Recently, tsunami-induced ground tilts offer a new possibility. The ground tilt signal accompanied by 2010 Mw 8.8 Chilean earthquake were observed at a tiltmeter network in Japan. However, tiltmeter stations are usually not as widely installed as broadband seismometers in other countries. Here, we studied broadband seismic records from Japan’s F-net and found ground tilt signals consistent with previously published tiltmeter dataset for this particular tsunamic event. Similar waveforms can also be found in broadband seismic networks in other countries, such as Taiwan, as well as an ocean-bottom seismometer. We documented a consistent time sequence of evolving back-azimuth directions of the tsunami waves at different stages of tsunami propagation through beamforming-frequency–wavenumber analysis and particle-motion analysis; the outcomes are consistent with the tsunami propagation model provided by the Pacific Tsunami Warning Center. These results shown that dense broadband seismic networks can provide a useful complementary dataset, in addition to tiltmeter arrays and other networks, to study or even monitor tsunami propagation using arrayed methods.


2018 ◽  
Vol 7 (3) ◽  
pp. 1233
Author(s):  
V Yuvaraj ◽  
S Rajasekaran ◽  
D Nagarajan

Cellular automata is the model applied in very complicated situations and complex problems. It involves the Introduction of voronoi diagram in tsunami wave propagation with the help of a fast-marching method to find the spread of the tsunami waves in the coastal regions. In this study we have modelled and predicted the tsunami wave propagation using the finite difference method. This analytical method gives the horizontal and vertical layers of the wave run up and enables the calculation of reaching time.  


2017 ◽  
Author(s):  
Francesc X. Roig-Munar ◽  
Josep M. Vilaplana ◽  
Antoni Rodríguez-Perea ◽  
José A. Martín-Prieto ◽  
Bernadí Gelabert

Abstract. Large boulders have been found on marine cliffs of 24 study areas of Minorca, Balearic Archipelago. These large imbricated boulders, of up to 229 tonnes, are located on platforms that conform the rocky coastline of Minorca, several tenths of meters from the edge of the cliff, up to 15 m above the sea level, and kilometres away from any inland escarpment. They are mostly located on the southeast coast of the island, and numerical models have identified this coastline as a high tsunami impact zone. The age of the boulders in most of the studied localities show a good correlation with historical tsunamis. Age of the boulders, direction of imbrication and estimation of run-up necessary for their placement, indicate dislodging and transport by North Africa tsunami waves that hit the coastline of Minorca.


Sign in / Sign up

Export Citation Format

Share Document