scholarly journals HYBRID DEEP NEURAL NETWORK AND DISTRIBUTED RAINFALL-RUNOFF MODEL FOR REAL-TIME RIVER-STAGE PREDICTION

2020 ◽  
Vol 8 (1) ◽  
pp. 46-58
Author(s):  
Masayuki HITOKOTO ◽  
Masaaki SAKURABA
2007 ◽  
Vol 4 (1) ◽  
pp. 287-326 ◽  
Author(s):  
R. J. Abrahart ◽  
L. M. See

Abstract. The potential of an artificial neural network to perform simple non-linear hydrological transformations is examined. Four neural network models were developed to emulate different facets of a recognised non-linear hydrological transformation equation that possessed a small number of variables and contained no temporal component. The modeling process was based on a set of uniform random distributions. The cloning operation facilitated a direct comparison with the exact equation-based relationship. It also provided broader information about the power of a neural network to emulate existing equations and model non-linear relationships. Several comparisons with least squares multiple linear regression were performed. The first experiment involved a direct emulation of the Xinanjiang Rainfall-Runoff Model. The next two experiments were designed to assess the competencies of two neural solutions that were developed on a reduced number of inputs. This involved the omission and conflation of previous inputs. The final experiment used derived variables to model intrinsic but otherwise concealed internal relationships that are of hydrological interest. Two recent studies have suggested that neural solutions offer no worthwhile improvements in comparison to traditional weighted linear transfer functions for capturing the non-linear nature of hydrological relationships. Yet such fundamental properties are intrinsic aspects of catchment processes that cannot be excluded or ignored. The results from the four experiments that are reported in this paper are used to challenge the interpretations from these two earlier studies and thus further the debate with regards to the appropriateness of neural networks for hydrological modelling.


2010 ◽  
Vol 11 (2) ◽  
pp. 482-495 ◽  
Author(s):  
Mohammad Sajjad Khan ◽  
Paulin Coulibaly

Abstract A major challenge in assessing the hydrologic effect of climate change remains the estimation of uncertainties associated with different sources, such as the global climate models, emission scenarios, downscaling methods, and hydrologic models. There is a demand for an efficient and easy-to-use rainfall–runoff modeling tool that can capture the different sources of uncertainties to generate future flow simulations that can be used for decision making. To manage the large range of uncertainties in the climate change impact study on water resources, a neural network–based rainfall–runoff model—namely, Bayesian neural network (BNN)—is proposed. The BNN model is used with Canadian Centre for Climate Modelling and Analysis Coupled GCM, versions 1 and 2 (CGCM1 and CGCM2, respectively) with two emission scenarios, Intergovernmental Panel on Climate Change (IPCC) IS92a and Special Report on Emissions Scenarios (SRES) B2. One widely used statistical downscaling model (SDSM) is used in the analysis. The study is undertaken to simulate daily river flow and daily reservoir inflow in the Serpent and the Chute-du-Diable watersheds, respectively, in northeastern Canada. It is found that the uncertainty bands of the mean ensemble flow (i.e., flow simulated using the mean of the ensemble members of downscaled meteorological variables) is able to mostly encompass all other flows simulated with various individual downscaled meteorological ensemble members whichever CGCM or emission scenario is used. In addition, the uncertainty bands are also able to typically encompass most of the flows simulated with another rainfall–runoff model, namely, Hydrologiska Byråns Vattenbalansavdelning (HBV). The study results suggest that the BNN model could be used as an effective hydrological modeling tool in assessing the hydrologic effect of climate change with uncertainty estimates in the form of confidence intervals. It could be a good alternative method where resources are not available to implement the general multimodel ensembles approach. The BNN approach makes the climate change impact study on water resources with uncertainty estimate relatively simple, cost effective, and time efficient.


Sign in / Sign up

Export Citation Format

Share Document