flood forecasting
Recently Published Documents


TOTAL DOCUMENTS

1280
(FIVE YEARS 301)

H-INDEX

57
(FIVE YEARS 8)

Water ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 187
Author(s):  
Yong-Man Won ◽  
Jung-Hwan Lee ◽  
Hyeon-Tae Moon ◽  
Young-Il Moon

Early and accurate flood forecasting and warning for urban flood risk areas is an essential factor to reduce flood damage. This paper presents the urban flood forecasting and warning process to reduce damage in the main flood risk area of South Korea. This process is developed based on the rainfall-runoff model and deep learning model. A model-driven method was devised to construct the accurate physical model with combined inland-river and flood control facilities, such as pump stations and underground storages. To calibrate the rainfall-runoff model, data of gauging stations and pump stations of an urban stream in August 2020 were used, and the model result was presented as an R2 value of 0.63~0.79. Accurate flood warning criteria of the urban stream were analyzed according to the various rainfall scenarios from the model-driven method. As flood forecasting and warning in the urban stream, deep learning models, vanilla ANN, Long Short-Term Memory (LSTM), Stack-LSTM, and Bidirectional LSTM were constructed. Deep learning models using 10-min hydrological time-series data from gauging stations were trained to warn of expected flood risks based on the water level in the urban stream. A forecasting and warning method that applied the bidirectional LSTM showed an R2 value of 0.9 for the water level forecast with 30 min lead time, indicating the possibility of effective flood forecasting and warning. This case study aims to contribute to the reduction of casualties and flood damage in urban streams and accurate flood warnings in typical urban flood risk areas of South Korea. The developed urban flood forecasting and warning process can be applied effectively as a non-structural measure to mitigate urban flood damage and can be extended considering watershed characteristics.


2022 ◽  
Vol 70 (1) ◽  
pp. 715-738
Author(s):  
Shidrokh Goudarzi ◽  
Seyed Ahmad Soleymani ◽  
Mohammad Hossein Anisi ◽  
Domenico Ciuonzo ◽  
Nazri Kama ◽  
...  

MAUSAM ◽  
2021 ◽  
Vol 44 (1) ◽  
pp. 104-107
Author(s):  
N. Y. APTE ◽  
A. K. DAS ◽  
L. C. RAM

MAUSAM ◽  
2021 ◽  
Vol 42 (2) ◽  
pp. 201-204
Author(s):  
P. N. SEN

A mathematical, model for Quantitative Precipitation Forecasting (QPF) has been developed on the basis of physical and dynamical laws. The surface and upper air meteorological observations have been used as inputs in the model. The output is the rate of precipitation from which the amount of precipitation can be computed time integration. The model can be used operationally for rainfall forecasting.


2021 ◽  
Author(s):  
Alvee Bin Hannan ◽  
Siam Maksud ◽  
Nasreen Jahan
Keyword(s):  

2021 ◽  
Vol 14 (1) ◽  
pp. 43
Author(s):  
Seong-Sim Yoon ◽  
Sang-Hun Lim

The mountainous Yeongdong region of South Korea contains mountains over 1 km. Owing to this topographic blockage, the region has a low-density rain-gauge network, and there is a low-altitude (~1.5 km) observation gap with the nearest large S-band radar. The Korean government installed an X-band dual-polarization radar in 2019 to improve rainfall observations and to prevent hydrological disasters in the Yeongdong region. The present study analyzed rainfall estimates using the newly installed X-band radar to evaluate its hydrological applicability. The rainfall was estimated using a distributed specific differential phase-based technique for a high-resolution 75 m grid. Comparison of the rainfall estimates of the X-band radar and the existing rainfall information showed that the X-band radar was less likely to underestimate rainfall compared to the S-band radar. The accuracy was particularly high within a 10 km observation radius. To evaluate the hydrological applicability of X-band radar rainfall estimates, this study developed a rain-based flood forecasting method—the flow nomograph—for the Samcheok-osib stream, which is vulnerable to heavy rain and resultant floods. This graph represents the flood risk level determined by hydrological–hydraulic modeling with various rainfall scenarios. Rainfall information (X-band radar, S-band radar, ground rain gauge) was applied as input to the flow nomograph to predict the flood level of the stream. Only the X-band radar could accurately predict the actual high-risk increase in the water level for all studied rainfall events.


Sign in / Sign up

Export Citation Format

Share Document