scholarly journals INFLUENCE OF THE STRESS HISTORY ON THE DEFORMATION CHARACTERISTICS OF REMOULDED, NORMALLY CONSOLIDATED COHESIVE SOIL

1981 ◽  
Vol 1981 (316) ◽  
pp. 97-109
Author(s):  
Seiki OHMAKI
1983 ◽  
Vol 20 (4) ◽  
pp. 718-733 ◽  
Author(s):  
P. K. Robertson ◽  
R. G. Campanella

Significant advances have been made in recent years in research, development, interpretation, and application of cone penetration testing. The addition of pore pressure measurements during cone penetration testing has added a new dimension to the interpretation of geotechnical parameters.The cone penetration test induces complex changes in stresses and strains around the cone tip. No one has yet developed a comprehensive theoretical solution to this problem. Hence, the cone penetration test provides indices which can be correlated to soil behaviour. Therefore, the interpretation of cone penetration data is made with empirical correlations to obtain required geotechnical parameters.This paper discusses the significant recent developments in cone penetration testing and presents a summarized work guide for practicing engineers for interpretation for soil classification, and parameters for drained conditions during the test such as relative density, drained shear strength, and deformation characteristics of sand. Factors that influence the interpretation are discussed and guidelines provided. The companion paper, Part II: Clay, considers undrained conditions during the test and summarizes recent developments to interpret parameters for clay soils, such as undrained shear strength, deformation characteristics of clay, stress history, consolidation characteristics, permeability, and pore pressure. The advantages and use of the piezometer cone are discussed as a separate topic in Part II: Clay. The authors' personal experiences and current recommendations are included. Keywords: static cone penetration testing, in situ, interpretation, shear strength, modulus, density, stress history, pore pressures.


Author(s):  
J. E. O’Neal ◽  
K. K. Sankaran ◽  
S. M. L. Sastry

Rapid solidification of a molten, multicomponent alloy against a metallic substrate promotes greater microstructural homogeneity and greater solid solubility of alloying elements than can be achieved by slower-cooling casting methods. The supersaturated solid solutions produced by rapid solidification can be subsequently annealed to precipitate, by controlled phase decomposition, uniform 10-100 nm precipitates or dispersoids. TEM studies were made of the precipitation of metastable Al3Li(δ’) and equilibrium AL3H phases and the deformation characteristics of a rapidly solidified Al-3Li-0.2Ti alloy.


Sign in / Sign up

Export Citation Format

Share Document