rapid solidification
Recently Published Documents


TOTAL DOCUMENTS

1640
(FIVE YEARS 176)

H-INDEX

57
(FIVE YEARS 9)

JOM ◽  
2022 ◽  
Author(s):  
M. Reinartz ◽  
M. Kolbe ◽  
D. M. Herlach ◽  
M. Rettenmayr ◽  
L. V. Toropova ◽  
...  
Keyword(s):  

Author(s):  
Tatu Pinomaa ◽  
Matti Lindroos ◽  
Paul Jreidini ◽  
Matias Haapalehto ◽  
Kais Ammar ◽  
...  

Rapid solidification leads to unique microstructural features, where a less studied topic is the formation of various crystalline defects, including high dislocation densities, as well as gradients and splitting of the crystalline orientation. As these defects critically affect the material’s mechanical properties and performance features, it is important to understand the defect formation mechanisms, and how they depend on the solidification conditions and alloying. To illuminate the formation mechanisms of the rapid solidification induced crystalline defects, we conduct a multiscale modelling analysis consisting of bond-order potential-based molecular dynamics (MD), phase field crystal-based amplitude expansion simulations, and sequentially coupled phase field–crystal plasticity simulations. The resulting dislocation densities are quantified and compared to past experiments. The atomistic approaches (MD, PFC) can be used to calibrate continuum level crystal plasticity models, and the framework adds mechanistic insights arising from the multiscale analysis. This article is part of the theme issue ‘Transport phenomena in complex systems (part 2)’.


CrystEngComm ◽  
2022 ◽  
Author(s):  
ruibo ma ◽  
Lili Zhou ◽  
Yong-Chao Liang ◽  
Ze-an Tian ◽  
Yun-Fei Mo ◽  
...  

To investigate microstructural evolution and plastic deformation under tension conditions, the rapid solidification processes of Ni47Co53 alloy are first simulated by molecular dynamics methods at cooling rates of 1011, 1012...


10.6036/10098 ◽  
2022 ◽  
Vol 97 (1) ◽  
pp. 53-57
Author(s):  
JUAN MANUEL PRADO LAZARO ◽  
JOSE ANGEL RAMOS BANDERAS ◽  
ISRAEL AGUILERA NAVARRETE ◽  
JAIME ALEJANDRO VERDUZCO MARTINEZ ◽  
ROCIO MARICELA OCHOA PALACIOS

In this work, the Zn22Al4Ag alloy was synthesized by melting in a muffle furnace.The alloy obtained was characterized by Scanning Electron Microscopy Energy Dispersive Spectroscopy and was analyzed by the X-Ray Diffraction technique, where the crystallinity of the material was verified before and after being processed. Likewise, the Differential Scanning Calorimetry technique was used to obtain the temperatures where phase transformations occurin the alloy. These results were fed to the Termocalc®, software to numerically obtain the phase diagram of the alloy. Subsequently, a section of the ingot was taken to the rapid solidification process by rotating drum. The process variables were manipulated: jet stability, nozzle diameter, distance from the nozzle surface to the cooling medium, the delay time of the molten material in the crucible, speed of the rotating drum and jet angle, until obtaining a microwire with a diameter of ~ 160µm. Finally, it was determined that inadequate control of these parameters can result in powders, flakes or blockage of the crucible outlet. Potentially uses within the micro and nanoworld as an analogy to structural elements and electrical conductors, in addition to its current use as a coating anti-corrosive. Key Words: ZnAlAg alloy, Melt spinning process, Microwire, DSC analysis, Thermodynamic simulation


2022 ◽  
Vol 1217 (1) ◽  
pp. 012005
Author(s):  
H An ◽  
N J Siambun ◽  
B L Chua ◽  
M J H Gan

Abstract Microstructure and microtexture of rapidly solidified undercooled Ni-Cu alloys were investigated. The characteristic undercooling of Ni80Cu20 alloy was determined as 45K, 90K and 160K. Dendrite deformation due to rapid solidification led to strong deformation microtexture. Due to recrystallization upon annealing after recalescence, many subgrains were formed in the microstructure. Further, annealing the quenched alloy at 900°, new microtextures and subgrains were formed, which was due to recrystallization and dislocation network rearrangement. The results of comparative experiment proved the recrystallization mechanism of the microstructure refinement in the non-equilibrium solidification structure of the undercooled binary alloy


Sign in / Sign up

Export Citation Format

Share Document