metallic substrate
Recently Published Documents


TOTAL DOCUMENTS

274
(FIVE YEARS 42)

H-INDEX

20
(FIVE YEARS 4)

2021 ◽  
Author(s):  
Rolf Brueck ◽  
Paresh Laddha ◽  
Dr. Manuel Presti ◽  
David odenthal ◽  
Klaus Mueller-Haas

2021 ◽  
Vol 9 ◽  
Author(s):  
Danilo Dini ◽  
Elisabetta Salatelli ◽  
Franco Decker

In the present work, we have undertaken the study of the n-doping process in poly-3,3″-didodecyl-2,2′:5′,2″-terthiophene (poly-33″-DDTT) employing the electrochemical quartz crystal microbalance (EQCM). The present study aims at understanding how cathodic charge in n-doped poly-33″-DDTT is compensated. For this purpose, the in situ analysis of the variations of the polymeric mass has been considered. Poly-33″-DDTT was obtained as a thin coating onto a metallic substrate via the anodic coupling of the corresponding monomer 3,3″-didodecyl-2,2′:5′,2″-terthiophene (33″-DDTT). When subjected to electrochemical n-doping in the polarization interval -2.5 ≤ Eappl ≤ 0 V vs. Ag/Ag+, the films of poly-33″-DDTT varied their mass according to a mechanism of cations insertion during n-doping and cations extraction during polymer neutralization. In fact, the electrochemical doping of polythiophenes requires the accompanying exchange of charged species to maintain the electroneutrality within the structure of the polymer in all states of polarization. At the end of a full electrochemical cycle (consisting of the n-doping and the successive neutralization of poly-33″-DDTT), the polymer retains a fraction of the mass acquired during n-doping, thus manifesting the phenomena of mass trapping. The combined analysis of electrochemical and microgravimetric data suggests that poly-33″-DDTT in the n-doped state undergoes (or electrocatalyzes) uncontrolled electrochemical reactions that are not accompanied by mass variations.


2021 ◽  
Author(s):  
Zhiquan Cui ◽  
Libin Lu ◽  
Yingchun Guan ◽  
Seeram Ramakrishna ◽  
Minghui Hong

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mojtaba Karimi Habil ◽  
Carlos J. Zapata–Rodríguez ◽  
Mauro Cuevas ◽  
Samad Roshan Entezar

AbstractWe propose an axisymmetric silicon nanoresonator with designed tapered angle well for the extraordinary enhancement of the decay rate of magnetic dipole (MD) emitters. Due to the resonant coupling of a MD emitter and the MD mode of the subwavelength resonator, the Purcell factor (PF) can easily reach 500, which is significantly higher than the PF when using a silicon nanosphere of the same size. The PF and the resonance frequency are conveniently tuned through the resonator diameter and the taper angle of the blind hole. When supported by a metallic substrate, further enhancement ($$>10^3$$ > 10 3 ) of the MD spontaneous emission is triggered by an image-induced quadrupolar high-Q mode of the nanoantenna. For the sake of comparison we include a critical analysis of the canonical problem that considers a Si spherical shell. Our results might facilitate a novel strategy for promising realizations of chip-scale nanophotonic applications.


Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3342
Author(s):  
Magdalena Łępicka ◽  
Yurii Tsybrii ◽  
Daniel Kiejko ◽  
Karol Golak

The aim of this work was to study the effect of anti-wear coatings on the selected frictional phenomena, i.a., frictional heating and tribofilm formation, of model tribological pairs. For this purpose, three popular metallic substrate materials were selected: AISI 316L and AISI 440B stainless steels, as well as Ti6Al4V two-phase titanium alloy. The substrates were tested in the dry sliding conditions in three states: uncoated, as well as titanium nitride (TiN) or diamond-like-carbon (DLC) coated. According to the results provided, under applied frictional conditions TiN coating, even if it is worn off the sample surface, contributes to excessive frictional heating of a tribological pair by altering the tribofilm formation. The analysis also showed that in some tribological pairs, rapid temperature alteration of a counter sample can be used to approximate the sliding distance after which the TiN coating becomes worn off. On the contrary, in all pairs tested, the DLC film became locally damaged, but it sustained its antifriction properties, contributing to low coefficients of friction (COFs) and the lowest frictional temperatures observed.


2021 ◽  
Vol 10 (6) ◽  
pp. e23310615308
Author(s):  
Patricia Marcolin ◽  
Caroline Olivieri da Silva Frozza ◽  
João Antonio Pêgas Henriques ◽  
Sandra Raquel Kunst ◽  
Murilo Camuri Crovace ◽  
...  

The Ti6Al4V alloy is usually employed as a biomaterial, however, when in use, exhibits a few drawbacks such as corrosion, caused by the release of aluminum and vanadium ions besides the bioinert behavior. Bioactive coatings offer a barrier effect and bioactivity, promoting biocompatibility and osseointegration processes. The present work aims to study the biocompatibility behavior of a bioglass-containing silane film deposited on a titanium alloy (Ti6Al4V) substrate. The effect of the surface roughness of the metallic substrate was also evaluated. Film/substrate systems were characterized as their morphological, chemical, physical, electrochemical behavior, and cell cytotoxicity and cell viability. The main results pointed out that silane films augment corrosion resistance of titanium alloy substrates. The biological results indicated a growth of osteoblast cells (MG-63), for all the test conditions. The bioglass film deposited on the ground substrate exhibits the highest cell density.


2021 ◽  
Vol 11 (10) ◽  
pp. 4551
Author(s):  
Zofia Kula ◽  
Michael Semenov ◽  
Leszek Klimek

The study discusses the results of investigations conducted on carbon coatings applied on a prosthodontic alloy Ni-Cr. Carbon coatings with the thickness of about 1000 nm were deposited by means of the RF PACVD method with a titanium interlayer applied by magnetron spray dispersion. The coatings underwent microscopic examinations, as well as structural tests with the use of Raman spectrometry, investigations of mechanical properties, adhesion and corrosion tests; also, the bacterial adhesion to the sample surface was determined. It can be inferred from the performed studies that the obtained carbon coatings exhibit mechanical properties which allow them to be used for prosthodontic elements. The coatings’ adhesion to the metallic substrate made of Ni-Cr alloy equaled about 150 mN. The examined coatings clearly improve the corrosion resistance and reduce the number of bacteria adhering to the sample surfaces. Taking all this into account, it can be stated that carbon coatings can be potentially applied to protect metal prosthetic restorations.


Author(s):  
Yaning Dong ◽  
Li Liu ◽  
Jin Sun ◽  
Wan Peng ◽  
Xiaohan Dong ◽  
...  

Designi of a coating material with efficient bactericidal property to cope with bacterial associated infections is highly desirable for metallic implants and devices. Here, we report phosphonate/quaternary ammonium copolymers, p(DEMMP-co-TMAEMA),...


Sign in / Sign up

Export Citation Format

Share Document