JOINT PROBABILITY DISTRIBUTION MODEL OF WIND AND WAVES INCLUDE DIRECTIONS FOR FATIGUE ANALYSIS OF OFFSHORE WIND TURBINE IN KITA-KYUSYU AREA

Author(s):  
Yoji TANAKA ◽  
Takeshi YOSHIOKA ◽  
Keiji NAKAI ◽  
Toshihiko NAGAI
Author(s):  
Xutian Xue ◽  
Xiaoyong Liu ◽  
Nian-Zhong Chen ◽  
Xifeng Gao

Abstract This paper aims to perform a time-domain mooring fatigue analysis for a Spar-type floating offshore wind turbine operated in the South China Sea. Tension ranges of mooring lines are achieved from a hydrodynamic analysis where the effects of wind, wave and current are considered. A rainflow counting method is used to calculate the number of mooring tension cycles with corresponding ranges. The fatigue lives of mooring lines are then predicted by Palmgren-Miner’s rule according to T-N & S-N curves. A comparison of fatigue lives predicted by T-N & S-N curves-based approaches with/without considering safety factors is made. The results show that the T-N curves-based approach is more conservative than the S-N curves-based approach if safety factors are not considered in the two approaches, while the fatigue lives predicted by both approaches are in general comparable when the safety factors suggested by API and DNVGL are applied in the two approaches. A comparative study of three kinds of R4 grade studless mooring chains with different diameters (2.5-inch, 4-inch, 5-inch) is also conducted and the results show that the design with the 2.5-inch chain does not meet the fatigue requirements.


Author(s):  
Junbae Kim ◽  
Hyeonjeong Ahn ◽  
Byoungcheon Seo ◽  
Hyunkyoung Shin

The initial design of a 12-MW floating offshore wind turbine (FOWT) was made by the University of Ulsan (UOU) based on the 5-MW offshore wind turbine of the National Renewable Energy Laboratory (NREL) using the law of similarity. The tower design was checked through the eigenfrequency and fatigue strength analysis according to the GL guideline of tower design conditions. The direct expansion of the 5 MW wind turbine support structure caused a resonance problem of the tower of the 12-MW UOU FOWT and the tower length was adjusted to avoid the 3P resonance. Wind turbines are required to have a design life of more than 20 years and shall be designed to endure both ultimate and fatigue loads experienced during the design life. The platform pitch motion of FOWTs due to combined wave and wind loading may result severely in both fore-aft forces and moments at the base of the tower. In this study, we used the simplified fatigue analysis, which is generally applied when considering safety margins by stress to predict the fatigue life of tower. In order to calculate the fatigue load, the Markov matrix was constructed by using the cycle counting method to determine range, average value, and cycle number of loads from peak and valley values of actual load histories simulated by FAST v8 of the tower base. The predicted fatigue life at the tower base was follow by S/N curves for welded steel structures and it was calculated by the Palmgren-Miner’s rule.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Hao Li ◽  
Yichuan Tang ◽  
Shibo Li ◽  
Jianquan Ma ◽  
Xiaojie Zhao

The pore ratio is an important parameter affecting the stability and safety of tailings reservoirs; however, the relationship between the pore ratio and physical properties of tailings sand has not been researched in-depth. In this paper, using the tailings from a tungsten mine in southern Shaanxi as a case study, the correlation between the minimum void ratio and related parameters is analyzed, based on laboratory test data, and the optimal marginal distribution function of the parameters is determined. The Gumbel-Hougard copula function that best describes the correlation between parameters is identified, and it is used to establish the joint probability distribution model of the three parameters, and the guarantee rate α is introduced to estimate and analyze the minimum void ratio. The results show that the optimal edge distribution of the fine particle content and specific gravity follows a truncated normal distribution, and the optimal edge distribution of the minimum void ratio follows a logarithmic normal distribution. According to AIC criterion, the Gumbel-Hougard copula is the best three-dimensional copula function to fit the minimum void ratio and related parameters. When the guarantee rate α is 0.485, the joint probability distribution model achieves optimal performance in terms of estimating the minimum void ratio. The maximum error of the estimation is 1.99%, which is verified through data, and the estimation meets the requirements for practical engineering. The method proposed in this paper uses the existing measured data to establish a joint probability distribution model and combines the collected fine particle content and specific gravity data with the guarantee rate to estimate the minimum void ratio, providing a novel basis for the study of the physical properties of tailings.


Author(s):  
Hyeonjeong Ahn ◽  
Hyunkyoung Shin

In 2017, the MHI Vestas released a 9.5-MW offshore wind turbine. It is also actively researching and developing a 10-MW offshore wind turbine. As the capacity of a wind turbine increases, the sizes of all its system components, including length and weight, correspondingly increase. Consequently, as a wind turbine becomes larger, it becomes necessary to analyze the fatigue load applied to its entire system. The first reason for such an analysis is to achieve a safe but not overly designed large wind turbine. Second, most wind turbine accidents involve aging turbines and are related to fatigue analysis. Accordingly, the purpose of fatigue analysis is to safely design a wind turbine that sustains repeated loads within its design life. In this study, the blades and loads for the fatigue analysis of a 12-MW floating offshore wind turbine are calculated based on the National Renewable Energy Laboratory (NREL) 5-MW wind turbine blades. The calculated loads are applied to the Markov matrix through a preprocessing, such as the cycle counting method. Finally, the equivalent fatigue load is estimated based on both mean and range. In this study, only the equivalent fatigue load on the turbine blade is calculated. However, if fatigue analysis is to be performed for all parts using equivalent loads, it is possible to design the wind turbine to fully withstand such loads throughout its design life, and prevent the overdesign of each part as well.


Sign in / Sign up

Export Citation Format

Share Document