cycle number
Recently Published Documents


TOTAL DOCUMENTS

372
(FIVE YEARS 148)

H-INDEX

26
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Fernando A Ocampo Gonzalez ◽  
Nicholas M Moore

Abstract Background: Diagnosis of COVID-19 disease primarily relies on nucleic acid amplification tests (NAAT) that amplify and detect viral RNA in specimens. These methods are expensive and time consuming. Antigen-based rapid diagnostic tests can substantially decrease turnaround time.Methods: We analyzed paired anterior nares swabs collected from symptomatic patients and asymptomatic healthcare workers being tested COVID-19. One swab was used for a direct RDT and the results were compared to NAAT.Results: 89 paired specimens were evaluated. The positive percent agreement (PPA) for the antigen RDT was 68.2%, and the negative percent agreement (NPA) was 98.5%. Despite a low PPA, the Κ statistic was 0.733 indicating substantial agreement with the NAAT result. The median cycle number in paired specimens with concordant results was significantly lower than in discordant specimens (21.3 versus 32.3; P=0.003).Conclusions: The RDT showed modest PPA and high NPA when compared to NAAT. The quick TAT and use of an inexpensive test more frequently could be useful in settings in which results from NAAT testing is delayed.


2021 ◽  
Author(s):  
Nur Sena Yüzbasi ◽  
Andac Armutlulu ◽  
Thomas Huthwelker ◽  
Paula Abdala ◽  
Christoph Müller

Chemical looping is an emerging technology to produce high purity hydrogen from fossil fuels or biomass with the simultaneous capture of the CO2 produced at the distributed scale. This process requires the availability of stable Fe2O3-based oxygen carriers. Fe2O3-Al2O3 based oxygen carriers exhibit a decay in the H2 yield with cycle number due to the formation of FeAl2O4 that cannot be re-oxidized. In this study, the addition of sodium (via a sodium salt) in the synthesis of Fe2O3-Al2O3 oxygen carriers was assessed as a means to counteract the cyclic deactivation of the oxygen carrier. Detailed insight into the oxygen carrier’s structure was gained by combined X-ray powder diffraction (XRD), X-ray absorption spectroscopy (XAS) at the Al, Na and Fe K-edges and scanning transmission electron microscopy/energy-dispersive X-ray spectroscopy (STEM/EDX) analyses. The addition of sodium prevented the formation of FeAl2O4 and stabilized the oxygen carrier via the formation of a layered structure, Na-β-Al2O3 phase. The resulting material, Na-β-Al2O3 stabilized Fe2O3, showed a very high H2 yield of ca. 13.3 mmol/g during 15 cycles.


2021 ◽  
Author(s):  
Nur Sena Yüzbasi ◽  
Andac Armutlulu ◽  
Thomas Huthwelker ◽  
Paula Abdala ◽  
Christoph Müller

Chemical looping is an emerging technology to produce high purity hydrogen from fossil fuels or biomass with the simultaneous capture of the CO2 produced at the distributed scale. This process requires the availability of stable Fe2O3-based oxygen carriers. Fe2O3-Al2O3 based oxygen carriers exhibit a decay in the H2 yield with cycle number due to the formation of FeAl2O4 that cannot be re-oxidized. In this study, the addition of sodium (via a sodium salt) in the synthesis of Fe2O3-Al2O3 oxygen carriers was assessed as a means to counteract the cyclic deactivation of the oxygen carrier. Detailed insight into the oxygen carrier’s structure was gained by combined X-ray powder diffraction (XRD), X-ray absorption spectroscopy (XAS) at the Al, Na and Fe K-edges and scanning transmission electron microscopy/energy-dispersive X-ray spectroscopy (STEM/EDX) analyses. The addition of sodium prevented the formation of FeAl2O4 and stabilized the oxygen carrier via the formation of a layered structure, Na-β-Al2O3 phase. The resulting material, Na-β-Al2O3 stabilized Fe2O3, showed a very high H2 yield of ca. 13.3 mmol/g during 15 cycles.


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7508
Author(s):  
Jung Wook Lim ◽  
Su Jae Heo ◽  
Min A. Park ◽  
Jieun Kim

Neuromorphic devices have been investigated extensively for technological breakthroughs that could eventually replace conventional semiconductor devices. In contrast to other neuromorphic devices, the device proposed in this paper utilizes deep trap interfaces between the channel layer and the charge-inducing dielectrics (CID). The device was fabricated using in-situ atomic layer deposition (ALD) for the sequential deposition of the CID and oxide semiconductors. Upon the application of a gate bias pulse, an abrupt change in conducting states was observed in the device from the semiconductor to the metal. Additionally, numerous intermediate states could be implemented based on the number of cycles. Furthermore, each state persisted for 10,000 s after the gate pulses were removed, demonstrating excellent synaptic properties of the long-term memory. Moreover, the variation of drain current with cycle number demonstrates the device’s excellent linearity and symmetry for excitatory and inhibitory behaviors when prepared on a glass substrate intended for transparent devices. The results, therefore, suggest that such unique synaptic devices with extremely stable and superior properties could replace conventional semiconducting devices in the future.


Research ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Hanjie Yang ◽  
Yang Wang ◽  
Xingli Zou ◽  
Rongxu Bai ◽  
Zecheng Wu ◽  
...  

Wafer-scale synthesis of p-type TMD films is critical for its commercialization in next-generation electro/optoelectronics. In this work, wafer-scale intrinsic n-type WS2 films and in situ Nb-doped p-type WS2 films were synthesized through atomic layer deposition (ALD) on 8-inch α-Al2O3/Si wafers, 2-inch sapphire, and 1 cm2 GaN substrate pieces. The Nb doping concentration was precisely controlled by altering cycle number of Nb precursor and activated by postannealing. WS2 n-FETs and Nb-doped p-FETs with different Nb concentrations have been fabricated using CMOS-compatible processes. X-ray photoelectron spectroscopy, Raman spectroscopy, and Hall measurements confirmed the effective substitutional doping with Nb. The on/off ratio and electron mobility of WS2 n-FET are as high as 105 and 6.85 cm2 V-1 s-1, respectively. In WS2 p-FET with 15-cycle Nb doping, the on/off ratio and hole mobility are 10 and 0.016 cm2 V-1 s-1, respectively. The p-n structure based on n- and p- type WS2 films was proved with a 104 rectifying ratio. The realization of controllable in situ Nb-doped WS2 films paved a way for fabricating wafer-scale complementary WS2 FETs.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Tianlong Fan ◽  
Linyuan Lü ◽  
Dinghua Shi ◽  
Tao Zhou

AbstractA cycle is the simplest structure that brings redundant paths in network connectivity and feedback effects in network dynamics. An in-depth understanding of which cycles are important and what role they play on network structure and dynamics, however, is still lacking. In this paper, we define the cycle number matrix, a matrix enclosing the information about cycles in a network, and the cycle ratio, an index that quantifies node importance. Experiments on real networks suggest that cycle ratio contains rich information in addition to well-known benchmark indices. For example, node rankings by cycle ratio are largely different from rankings by degree, H-index, and coreness, which are very similar indices. Numerical experiments on identifying vital nodes for network connectivity and synchronization and maximizing the early reach of spreading show that the cycle ratio performs overall better than other benchmarks. Finally, we highlight a significant difference between the distribution of shorter cycles in real and model networks. We believe our in-depth analyses on cycle structure may yield insights, metrics, models, and algorithms for network science.


Author(s):  
Jialiang Liu ◽  
Yu Jin ◽  
Yujie Zhu ◽  
Jinyang Li ◽  
Xuguang Zhang ◽  
...  

AbstractHigh-pressure water jet crushing concrete has significant advantages in safety, quality and environmental protection, which has a broad application prospect in the maintenance and reconstruction of concrete building. Nevertheless, it still has some problems such as high threshold pump pressure and large specific energy consumption. Water jet breaking concrete with liquid nitrogen (LN2) cold shock assistance combined with the low-temperature-induced fracturing and hydraulic impact can effectively reduce the working pressure of water jet and improve the energy utilization rate. On account of the unclear cracking characteristics and mechanism of concrete under the LN2 cold shock, this research carried out the following systematic research focusing on the key scientific issues above based on mechanical tests, scanning electron microscopy (SEM), and nuclear magnetic resonance (NMR). Results indicate that the total mass of concrete exfoliated blocks after compression failure increases as the LN2 cold shock time and the number of shock cycles goes up, and the uniaxial compressive strength decreases from 8.27 to 21.96%. Through SEM and NMR analysis, it is found that LN2 cold shock can cause more micro-cracks to develop inside the concrete, and the pore development increases as the cold shock time and the cycle number increase. Additionally, under the condition of water jet pump pressure of 150 MPa, the maximum width and depth of crater for cold shock of 5 min increase by 41.79% and 20.48%, respectively, and those for cold shock of 10 min increase by 76.72% and 40.43%, respectively, compared with the original sample.


2021 ◽  
Vol 11 (22) ◽  
pp. 11052
Author(s):  
Emanuela Schilirò ◽  
Raffaella Lo Nigro ◽  
Fabrizio Roccaforte ◽  
Filippo Giannazzo

Atomic layer deposition (ALD) of high-κ dielectrics on two-dimensional (2D) materials (including graphene and transition metal dichalcogenides) still represents a challenge due to the lack of out-of-plane bonds on the pristine surfaces of 2D materials, thus making the nucleation process highly disadvantaged. The typical methods to promote the nucleation (i.e., the predeposition of seed layers or the surface activation via chemical treatments) certainly improve the ALD growth but can affect, to some extent, the electronic properties of 2D materials and the interface with high-κ dielectrics. Hence, direct ALD on 2D materials without seed and functionalization layers remains highly desirable. In this context, a crucial role can be played by the interaction with the substrate supporting the 2D membrane. In particular, metallic substrates such as copper or gold have been found to enhance the ALD nucleation of Al2O3 and HfO2 both on monolayer (1 L) graphene and MoS2. Similarly, uniform ALD growth of Al2O3 on the surface of 1 L epitaxial graphene (EG) on SiC (0001) has been ascribed to the peculiar EG/SiC interface properties. This review provides a detailed discussion of the substrate-driven ALD growth of high-κ dielectrics on 2D materials, mainly on graphene and MoS2. The nucleation mechanism and the influence of the ALD parameters (namely the ALD temperature and cycle number) on the coverage as well as the structural and electrical properties of the deposited high-κ thin films are described. Finally, the open challenges for applications are discussed.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Dong Zhang ◽  
Ai-hong Lu ◽  
Xia Wang ◽  
Yu Xia ◽  
Si-yu Gong ◽  
...  

Understanding the mechanical properties and energy response of high-porosity concrete under the cyclic loading and unloading is the foundation of road construction in sponge city. In this study, the concrete with the porosity of 15% was taken as the research object, and the cyclic loading and unloading tests on the high-porosity concrete were performed under the stress amplitude of 25 MPa, 30 MPa, and 35 MPa in the elastic stage. The effects of stress amplitude and cycle number on the mechanical characteristics and damage evolution law of concrete were obtained. The experimental results show the following. (1) With the increase of cycle number, the loading and unloading elastic modulus of concrete under different stress amplitudes first increases and then decreases; the greater the stress amplitude, the faster the growth and deceleration of the loading and unloading elastic modulus. (2) With the increase of the cycle number, the peak strain and residual plastic deformation increase. (3) The greater the stress amplitude, the higher the damage of concrete; with the increasing number of cyclic loading and unloading, the damage of concrete is enhanced gradually. When the damage variable value is 1, the relationship between the cycle number and the initial stress amplitude satisfies a negative exponential function.


Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 6997
Author(s):  
Till Julian Adam ◽  
Wibke Exner ◽  
Peter Wierach

Advanced nanoparticle-reinforced glass fibre composites represent a promising approach to improving the service life of fatigue-loaded structures such as wind turbine rotor blades. However, processing particle-reinforced resins using advanced infusion techniques is problematic due to, for example, higher viscosity as well as filtering effects. In this work, the effects of boehmite nanoparticles on viscosity, static properties and fatigue life are investigated experimentally. Whereas rheological analysis reveals a significant increase of viscosity in the case of pristine boehmite particles, an additional taurine surface modification of the particles can effectively reduce viscosity increase. As regards mechanical properties, significant improvements of both static as well as fatigue properties are found. The addition of 15 wt.% of boehmite particles increases fatigue life by a maximum of 270% compared to the unmodified fibre-reinforced epoxy. Transmitted light-based investigation of the damage mechanisms shows delayed initiation and smaller growth rates for laminates containing boehmite particles. At the same time, the observed mechanisms and their accumulation along the relative cycle number do not change significantly. In addition, by characterising autonomous heating, the so-called Risitano fatigue limit is determined. The results reveal that with increasing particle content there is an increase in the fatigue limit.


Sign in / Sign up

Export Citation Format

Share Document