scholarly journals 3D TSUNAMI RUN-UP SIMULATION BY USING PARTICLE METHOD WITH GEOGRAPHY ANALYSIS MODEL INCLUDING BUILDING INFORMATION

Author(s):  
Shimon EGUCHI ◽  
Mitsuteru ASAI ◽  
Hideyuki O-TANI ◽  
Masaharu ISSHIKI
2016 ◽  
Vol 10 (05) ◽  
pp. 1640020 ◽  
Author(s):  
Masaharu Isshiki ◽  
Mitsuteru Asai ◽  
Shimon Eguchi ◽  
Hideyuki O-Tani

The 2011 off the Pacific coast of Tohoku Earthquake was one of the most powerful earthquakes on record in Japan and the huge tsunami caused by the earthquake inflicted extensive damage to the coastal areas of the Tohoku region. To form safe coastal areas, countermeasures against disaster should be developed considering not only tangible infrastructures including breakwater and bridges but also intangible measures including education on disaster prevention and the development of hazard maps. The tsunami run-up analysis is expected to play a role as one of the countermeasures against tsunami. In this research, we aim to establish a tool to effectively analyze the tsunami run-up in urban areas based on the Smoothed particle hydrodynamics (SPH) method. And then, we propose a series of pre-process procedures to develop a detailed geography analysis model that reflects the geography, elevation, and exterior shapes of buildings by referring to 3D location information and digital elevation model data obtained from a geographical information system. Finally, we established a photorealistic visualization method so that citizen can understand the tsunami phenomenon intuitively.


2021 ◽  
Vol 13 (7) ◽  
pp. 1399
Author(s):  
Quang Nguyen Hao ◽  
Satoshi Takewaka

In this study, we analyze the influence of the Great East Japan Earthquake, which occurred on 11 March 2011, on the shoreline of the northern Ibaraki Coast. After the earthquake, the area experienced subsidence of approximately 0.4 m. Shoreline changes at eight sandy beaches along the coast are estimated using various satellite images, including the ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer), ALOS AVNIR-2 (Advanced Land Observing Satellite, Advanced Visible and Near-infrared Radiometer type 2), and Sentinel-2 (a multispectral sensor). Before the earthquake (for the period March 2001–January 2011), even though fluctuations in the shoreline position were observed, shorelines were quite stable, with the averaged change rates in the range of ±1.5 m/year. The shoreline suddenly retreated due to the earthquake by 20–40 m. Generally, the amount of retreat shows a strong correlation with the amount of land subsidence caused by the earthquake, and a moderate correlation with tsunami run-up height. The ground started to uplift gradually after the sudden subsidence, and shoreline positions advanced accordingly. The recovery speed of the beaches varied from +2.6 m/year to +6.6 m/year, depending on the beach conditions.


Author(s):  
Juh-Whan Lee ◽  
Jennifer L. Irish ◽  
Robert Weiss

Since near-field-generated tsunamis can arrive within a few minutes to coastal communities and cause immense damage to life and property, tsunami forecasting systems should provide not only accurate but also rapid tsunami run-up estimates. For this reason, most of the tsunami forecasting systems rely on pre-computed databases, which can forecast tsunamis rapidly by selecting the most closely matched scenario from the databases. However, earthquakes not included in the database can occur, and the resulting error in the tsunami forecast may be large for these earthquakes. In this study, we present a new method that can forecast near-field tsunami run-up estimates for any combination of earthquake fault parameters on a real topography in near real-time, hereafter called the Tsunami Run-up Response Function (TRRF).Recorded Presentation from the vICCE (YouTube Link): https://youtu.be/tw1D29dDxmY


2015 ◽  
Vol 124 (2) ◽  
pp. 177-192 ◽  
Author(s):  
Nobuhisa MATSUTA ◽  
Yasuhiro SUZUKI ◽  
Nobuhiko SUGITO ◽  
Takashi NAKATA ◽  
Mitsuhisa WATANABE

Author(s):  
Kohei Murotani ◽  
Seiichi Koshizuka ◽  
Eiichi Nagai ◽  
Toshimitsu Fujisawa ◽  
Akira Anju ◽  
...  
Keyword(s):  
Run Up ◽  

Sign in / Sign up

Export Citation Format

Share Document