ANALYTICAL STUDY ON THE SECTIONAL FORCE OF HORIZONTAL STIFFENER FOR HIGH STRENGTH BOLTED END PLATE CONNECTION

Author(s):  
Yuma SUGIMOTO ◽  
Yuki MINEYAMA ◽  
Takashi YAMAGUCHI
2014 ◽  
Vol 1025-1026 ◽  
pp. 878-884
Author(s):  
Jong Wan Hu ◽  
Jun Hyuk Ahn

This paper is principally performed to survey end-plate connection are described in the next part based on ideal limit states. The determination of end-plate based on the full plastic strength of the steel beam in accordance with 2001 AISC-LRFD manual and AISC/ANSI 358-05 Specifications. The bolted connections considered herein were performed to include the end-plate component of moment connections. This study is intended to investigate economic design for end-plate connections. In addition, the proposed end-plate model is evaluated by comparing the required factored bolt strength. The end-plates using 8 high strength bolts with wider gages demonstrated this design. The equations belonging to the step-by-step design procedure are described based on complete proving of design. Finally, new design methodology is applied to end-plate connections suggested in this study.


2014 ◽  
Vol 17 (1) ◽  
pp. 47-67 ◽  
Author(s):  
F. Zahmatkesh ◽  
M.H. Osman ◽  
E. Talebi ◽  
A.B.H. Kueh

2013 ◽  
Vol 12 (2) ◽  
pp. 251-258
Author(s):  
Krzysztof Ostrowski ◽  
Jan Łaguna ◽  
Aleksander Kozłowski

End-plate connections are very often used is steelwork, as tension and bending connections. As a result of deflection of end plate, additional forces, known as prying forces arise and consequently increase stresses in bolts. Eurocode 1993-1-8 do not distinguish end-plate connections prestressed by high strength bolts from non-prestressed. The aim of the paper is to perform the comparison of previous analytical models and code regulations for coefficient of prying forces to the experimental tests and modelling by finite element method. Results of the analysis show that the behaviour of prestressed connection is essentially different with comparison to non-prestressed.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Shufeng Li ◽  
Di Zhao ◽  
Yating Zhou

PurposeConcrete-filled steel tube structures are widely used for their high bearing capacity, good plasticity, good fire resistance and optimal seismic performance. In order to give full play to the advantages of concrete-filled steel tube, this paper proposes a prefabricated concrete-filled steel tube frame joint.Design/methodology/approachThe concrete-filled steel tube column and beam are connected by high-strength bolted end-plate, and the steel bars in the concrete beam are welded vertically with the end-plates through the enlarged pier head. In addition, the finite element software ABAQUS is used numerically to study the seismic performance of the structure.FindingsThe ductility coefficient of the joint is in 1.72–6.82, and greater than 2.26 as a whole. The equivalent viscous damping coefficient of the joint is 0.13–3.03, indicating that the structure has good energy dissipation capacity.Originality/valueThe structure is convenient for construction and overcomes the shortcomings of the previous on-site welding and on-site concrete pouring. The high-strength bolted end-plate connection can effectively transfer the load, and each component can give play to its material characteristics.


2017 ◽  
pp. 457-462
Author(s):  
H. Namba ◽  
M. Tabuchi ◽  
T. Tanaka ◽  
T. Harada ◽  
A. Fukuda ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document