scholarly journals NUMERICAL ANALYSIS OF FLOWS AROUND SQUARE CYLINDER BY MEANS OF NON-LINEAR κ-ε MODEL

1999 ◽  
Vol 43 ◽  
pp. 383-388
Author(s):  
Ichiro KIMURA ◽  
Takashi HOSODA
2018 ◽  
pp. 307-314 ◽  
Author(s):  
Emmanuel E.T. Olodo ◽  
Olivier A. Passoli ◽  
Villevo Adanhounme ◽  
Svetlana L. Shambina

2021 ◽  
Vol 23 (07) ◽  
pp. 858-866
Author(s):  
Gauri Thakur ◽  
◽  
J.K. Saini ◽  

In numerical analysis, methods for finding roots play a pivotal role in the field of many real and practical applications. The efficiency of numerical methods depends upon the convergence rate (how fast the particular method converges). The objective of this study is to compare the Bisection method, Newton-Raphson method, and False Position Method with their limitations and also analyze them to know which of them is more preferred. Limitations of these methods have allowed presenting the latest research in the area of iterative processes for solving non-linear equations. This paper analyzes the field of iterative methods which are developed in recent years with their future scope.


1983 ◽  
Vol 66 ◽  
pp. 297-321
Author(s):  
J. Perdang

AbstractWe survey the mathematics of non-linear Hamiltonian oscillations with emphasis being laid on the more recently discovered Kolmogorov instability. In the context of radial adiabatic oscillations of stars this formalism predicts a Kolmogorov instability even at low oscillation energies, provided that sufficiently high linear asymptotic modes have been excited.Numerical analysis confirms the occurrence of this instability. It is found to show up already among the lowest order modes, although high surface amplitudes are then required (ǀδrǀ/R ~ 0.5 for an unstable fundamental mode – first harmonic coupling). On the basis of numerical evidence we conjecture that in the Kolmogorov unstable regime the enhanced coupling due to internal resonance effects leads to an equipartition of energy over all interacting degrees of freedom. We also indicate that the power spectrum of such oscillations is expected to display two components: A very broad band of overlapping pseudo-linear frequency peaks spread out over the asymptotic range, and a strictly non-linear 1/f-noise type component close to the frequency origin.It is finally argued that the Kolmogorov instability is likely to occur among non-linearly coupled non-radial stellar modes at a surface amplitude much lower than in the radial case. This lends support to the view that this instability might be operative among the solar oscillations.


Sign in / Sign up

Export Citation Format

Share Document