scholarly journals GEARING WITH VARIABLE GEAR RATIO APPLIED IN MECHANICAL SYSTEMS

2020 ◽  
Vol 5 (1) ◽  
pp. 1-5
Author(s):  
Silvia Maláková ◽  
Peter Frankovský ◽  
Vojtech Neumann
Author(s):  
Lina Wramner

In many mechanical systems there are nonlinearities of clearance type. This type of nonlinearity often causes problems with convergence and accuracy in simulations, due to the discontinuities at impact. For systems with gap-activated springs connected to ground, it has been proposed in previous work to reformulate the problem as a linear complementary problem (LCP), which can be solved in a very efficient way. In this paper, a generalization of the LCP approach is proposed for systems with gap-activated springs connecting different bodies. The generalizations enable the LCP approach to be used for an arbitrary number of gap-activated springs connecting either different bodies or connecting bodies to ground. The springs can be activated in either compression or expansion or both and a gear ratio can be included between the bodies. The efficiency of the algorithm is demonstrated with an application example of a dual mass flywheel (DMF).


1991 ◽  
Vol 161 (2) ◽  
pp. 13-75 ◽  
Author(s):  
Lev V. Prokhorov ◽  
Sergei V. Shabanov

1972 ◽  
Vol 68 (2_Supplb) ◽  
pp. S44-S73 ◽  
Author(s):  
Eugene F. Bernstein

ABSTRACT Among the critical factors in organ perfusion are (1) the mechanical components of the system, (2) the composition of the perfusate, and (3) the perfusing conditions. In this review, particular consideration is given to the pump, the oxygenator, and cannulas in such systems. Emphasis is placed upon the selection of pertinent equipment for the goals of a particular perfusion experiment, based upon the criteria of adequacy of the perfusion. Common problems in organ perfusion are summarized, and potential solutions to the perfusion problem, involving either biologic or mechanical extracorporeal systems, are suggested.


Sign in / Sign up

Export Citation Format

Share Document